Package 'MIA'

Version 1.0
Date 2016-01-14
Title Matrix Integration Analysis
Author Jinyu Chen <chjy@amss.ac.cn>, Shihua Zhang <zsh@amss.ac.cn>
Depends MATLAB (≥ R2013a)
Description Detecting multi-dimensitional modules (md-modules) in diverse genomics data as well as molecular network data using the methods in MIA package.
URL http://page.amss.ac.cn/shihua.zhang/software.html

1

Here, we provide a guide for MIA package. It describes all the MATLAB functions in MIA in detail. For each method, these MATLAB functions mainly perform the tasks including realizing a specific algorithm, drawing figures and outputting text files about the identified md-modules.

1 jNMF

jNMF (joint Non-negative Matrix Factorization) enables users to simultaneously factor two or more types of genomic data sharing the same set of samples. Here, we adopt multiplicative update algorithm to solve the following problem:

$$\min_{W,H_i} \sum_{i=1}^N \|X_i - WH_i\|_F^2, \quad \text{s.t. } W \ge 0, H_i \ge 0, i = 1, ..., N.$$

1.1 Algorithm

D 0000	
Run_jNMF	The main function for jNMF.
J	je i je

Description

This is the main function for jNMF, which integrates all the related functions to achieve it.

be found in Section 5.

Usage

Run_jNMF(Input);

Arguments

Input

Output

It saves all the results in the directory './MIA/jNMF/jNMF_Results/'.		
jNMF_Results.mat	The essential computed variables.	
jNMF_RunRecords.txt	The updated values of the objective function in each round of running.	
jNMF_Results.txt	The numbers and indexes of features separated in comma. Each row records the information for each identified md-module.	
Several folders	Each folder contains the lists of all the identified md-modules for one type of features as shown in Figure 2a and Figure 3a.	
Several figures	As shown in Figure 2b and Figure 4.	
jNMF_PrepData	Preprocess the input data.	

A structure variable. The details about its construction can

Description

This function is used to preprocess the input data to ensure its non-negativity.

Usage

[X, isdouble] = jNM	IF_PrepData(OX);	
Arguments		
OX	A matrix.	
Output		
X isdouble	A non-negative matrix, the transformation of data <i>OX</i> . A binary variable (1 indicates changes have been made; 0 is for no change, that is, $X = OX$).	
jNMF_comodule	Obtain the md-modules.	

This function outputs the optimal factorization results through running jNMF for multiple times, then identify md-modules based on the factorized matrices W, H_i (i = 1, 2, ...).

Usage

[W, H, Comodule, params] = jNMF_comodule(Input, params);

Arguments

Guments	
Input	A structure variable including two components:
Input.data	A non-negative matrix combing N data blocks sequentially to be
	factorized, such as $Input.data = [X_1, X_2,, X_N]$.
Input.XBlockInd	A matrix of size $N \times 2$. The two elements of the <i>i</i> th row give the
	start and end column indexes in <i>Input.data</i> for data matrix X_i
	(i = 1,, N).
params	A structure variable including six components:
params.isdouble	A vector of size $N \times 1$. The <i>i</i> th element indicates whether the <i>i</i> th
_	data matrix is transformed to ensure its non-negativity (0 for no
	change, and 1 for change).
params.K	The number of md-modules users prefer to identify.
params.nloop	The repeating times of jNMF. To ensure the robust of this method,
	this function repeats the algorithm for 'params.nloop' times.
params.maxiter	The maximal number of iterations for this algorithm.
params.tol	The precision for convergence of algorithm.
-	A positive vector of size $1 \times (N+1)$. Thresholds for selecting features
I	in N data blocks. The first one is to select samples.
Output	
W, H	Factorization results such that <i>Input.data</i> \approx WH. W is the basis matrix
· · · 7	of size $m \times K$ and H is the weight matrix of size $K \times n$, where
	K = params.K.
Comodule	Identified md-modules recorded in a $(K \times (N+1))$ cell array. Comodule $\{i, j\}$
	records selected feature indexes of the <i>j</i> th type of variables in the <i>i</i> th
	identified md-module. The first column is for selected samples.
params	Compared to ' <i>params</i> ' as input, there are something new added in it,
pulums	including
params.records	A $(nloop \times 1)$ cell array. <i>params.records</i> { <i>i</i> } is a $(iter \times (N + 1))$
paramonecoras	vector, where each row records the values of all the terms in the
	objective function and the sum of them in each iteration.
narams iterNumI ist	A $(nloop \times 1)$ vector, where each element is the number of iterations
params.nem annList	for each round of running.
	for each round of running.
jNMF_algorithm	jNMF algorithm.

Description

This is jNMF algorithm.

Usage

[W, H, TerminalObj, iter] = jNMF_algorithm(X, XInd, params);

Х	A non-negative input matrix of size $m \times n$ combing N data matrices
	sequentially to be factorized (e.g., $X = [X_1, X_2,, X_N]$).
XInd	A matrix of size $N \times 2$. The two elements of the <i>i</i> th row give the start

params	and end column indexes in X for data matrix X_i $(i = 1,, N)$. A structure variable including <i>params.K</i> , <i>params.maxiter</i> , <i>params.tol</i> defined the same as that in the function ' <i>jNMF_comodule</i> '.	
Output		
W, H iter TerminalObj	Factorization results like those in function ' <i>jNMF_comodule</i> '. The number of iterations when the algorithm stops. A (<i>iter</i> \times (N + 1)) matrix in which each row records the values of all the terms in the objective function and the sum of them in each iteration.	
jNMF_module	Identify md-modules from factorized matrices.	

Based on the factorized matrix W or H_i , identify module members for each type of features.

Usage

module = jNMF_module(H, t, isdouble);

Arguments

H	A $(K \times m)$ non-negative matrix used for module identification.
t	A threshold value for selecting features.
isdouble	A binary variable (1 is for the number of features in matrix <i>H</i> is double than that of the original ones, and 0 is for no change).
Output module	A ($K \times 1$) cell array. modulei,1 contains the feature indexes of the <i>i</i> th module.

1.2 Output figures

jNMF_plot_X	Provide the heatmaps of the original input matrices.	
-------------	--	--

Description

Draw the heatmaps of the original input matrices $(X_1, X_2, ..., X_N)$.

Usage

jNMF_plot_X(X, XInd, fig, figure_title, colormap_type);

Arguments

Х	The input matrix combing N data matrices to be factorized (e.g.,
	$X = [X_1, X_2,, X_N]$).
XInd	A matrix of size $N \times 2$. The two elements of the <i>i</i> th row give the start
	and end column indexes in X for data matrix X_i $(i = 1,, N)$.
fig	A positive integer for figure index.
figure_title	A string for the title of figure.
colormap_type	A string for the colormap of heatmaps. Options includes 'blue-yellow',
	'green-red', 'yellow', 'blue-white-red', 'default'.

Output

The heatmaps for all the input data matrices as shown in Figure 4.

```
jNMF_plot_results
```

Show the heatmaps of certain identified md-modules.

Show the heatmaps of a selected identified md-module (circled in yellow lines).

Usage

jNMF_plot_results(X, XInd, FeatureType, fig, figure_title, colormap_type, vectorForRank);

Arguments

0	
X, XInd, fig, figure_title	e, colormap_type
	They have the same definitions with those in function <i>jNMF_plot_X</i> .
FeatureType	A $(1 \times N)$ cell array. <i>FeatureType</i> { <i>i</i> } records the name of <i>i</i> th type of
	features (e.g., <i>FeatureType</i> = { ' <i>Gene expression</i> ', ' <i>microRNA expression</i> ', ' <i>CNV</i> '}).
vectorForRank	A structure variable containing four components:
vectorForRank.w, ve	ctorForRank.h
	Two vectors for the selected md-module. For example, if one wants to
	demonstrate the <i>i</i> th md-module, <i>vectorForRank.w</i> is the <i>i</i> th column of
basis matrix W and vectorForRank.h is the <i>i</i> th row of weight matrix	
	Н.
vectorForRank.com	odule
	A $(1 \times (N + 1))$ cell array. <i>vectorForRank.comodule</i> $\{i\}$ records the
	<i>i</i> th feature indexes of the selected md-module.
vectorForRank.hInd	Similar with the input variable 'XInd' to 'X', it records the indexes
	for 'vectorForRank.h'.

Output

The heatmaps for a selected md-module to demonstrate its patterns as shown in Figure 4.

jNMF_plot_correlation	Demonstrate the correlations between the original data
	and reconstructed data.

Description

Demonstrate the correlations between the original data X_i and reconstructed data $newX_i$ = WH_i using boxplots.

Usage

corrMat = jNMF_plot_correlation(X, newX, XInd, newXInd, fig, figure_title);

Arguments

X, XInd, fig, figure_title

They have the same definitions with those in function ' <i>jNMF_plot_X</i> '.
The reconstructed matrix combing N data matrices sequentially,
that is, $newX = [WH_1, WH_2,, WH_N].$
Similar with the input variable 'XInd' to 'X', it records the indexes
for matrix <i>newX</i> .
A matrix of size $m \times N$, where m is the number of samples and N is the input data matrices, respectively. $corrMat(i,j)$ records the correlation between the <i>i</i> th rows of the original data (X_j) and reconstructed data
$(WH_j).$
ata matrices $X_1, X_2,, X_N$ as shown in Figure 4.

jNMF_plot_distribution

Demonstrate the module size distributions.

This function provides the histograms for the size distributions of (N + 1) types of features in the identified md-modules.

Usage

jNMF_plot_distribution(nSample, XInd, Comodule, FeatureType, fig, figure_title);

Arguments

XInd, FeatureType, fig,	figure_title
	They are the same as those in function 'jNMF_plot_results'.
nSample	The number of samples.
Comodule	It is the same as that in function ' <i>jNMF_comodule</i> '.
Dutnut	

Output

Histograms for the size distributions of (N+1) types of features in the identified md-modules as shown in Figure 4.

1.3 Output into text files

Index2LabelForModuleContent	<i>Output the identified md-modules into text files.</i>
-----------------------------	--

Description

Output a number of text files, each of which records the selected feature names.

Usage

Index2LabelForModuleContent(ModuleIndex, FeatureLabel, TypeName, ResultsFile);

Arguments

ModuleIndex	A ($K \times 1$) cell array. <i>ModuleIndex</i> { i } records the indexes of the <i>i</i> th
	identified module for one type of features.
FeatureLabel	A $(n \times 1)$ cell array recording all the names of one type of features.
TypeName	A string for the feature type (e.g., <i>TypeName</i> = ' <i>Gene expression</i> ').
ResultsFile	A string for the folder name to save these lists (e.g., TypeName
	= 'Gene expression', ResultsFile = 'jNMF_results', all the identified
	gene lists are saved in the directory: './jNMF_results/GeneLists/'.

Output

A number of text files (e.g., GeneList_1.txt, GeneList_2.txt,)

OutputModule2TXT	<i>Output the feature indexes of the identified md-modules.</i>
------------------	---

Description

Output the feature indexes of the identified md-modules into a text file.

Usage

OutputModule2TXT(Comodule, FeatureType, ResultsFile);

Comodule	It is the same as that in function ' <i>jNMF_comodule</i> '.
ResultsFile	A string for the name of this text file.

Output

A text file named as $jNMF_Results.txt$ (ResultsFile = ' $jNMF_Results$ '), recording the number and indexes of selected features separated by comma.

2 SNMNMF

SNMNMF (Sparse Network-regularized Multiple NMF) can incorporate the interactions within $(A_{11} \in \mathbb{R}^{n_1 \times n_1}, A_{22} \in \mathbb{R}^{n_2 \times n_2})$ and between the two genomics variables $(A_{12} \in \mathbb{R}^{n_1 \times n_2})$ into the *jNMF* framework for pairwise case $(X_1 \in \mathbb{R}^{p \times n_1}, X_2 \in \mathbb{R}^{p \times n_2})$. Users can choose which networks they prefer to incorporate in the framework by setting the corresponding parameters. Besides, it also adds the sparsity constraints for basis matrix W and weight matrices H_1 and H_2 . With the network-regularized constraints, *SNMNMF* makes the variables linked in these two networks more likely to be placed into the same module. With the sparsity constraints, it helps us choose key variables. These constraints both lead to the identified md-modules more biologically interpretable. This model is defined as follows:

$$\begin{split} \min_{W,H_i} \sum_{i=1}^{2} \|X_i - WH_i\|_F^2 &- \sum_{1 \le i \le j \le 2} \lambda_{ij} Tr(H_i A_{ij} H_j^T) \\ &+ \gamma_1 \|W\|_F^2 + \gamma_2 (\sum_i \|h_i^{(1)}\|_1^2 + \sum_j \|h_j^{(2)}\|_1^2) \\ &\text{s.t.} \quad W \ge 0, H_1 \ge 0, H_2 \ge 0. \end{split}$$

where $h_i^{(1)}$ is the *i*th column of H_1 , and $h_j^{(2)}$ is the *j*th column of H_2 .

2.1 Algorithm

Run_SNMNMFThe main function for SNMNMF.

Description

This is the main function for SNMNMF which integrates all the related functions to achieve it.

Usage

Run_SNMNMF(Input);

Arguments Input

A structure variable (Section 5).

Output

It saves all the results in the directory './MIA/SNMNMF/SNMNMF_Results/', including 'SNMNMF_Results.mat', 'SNMNMF_RunRecords.txt', 'SNMNMF_Results.txt', several folders and figures, which record the similar contents with those in function 'Run_jNMF' of jNMF as shown in Figure 2, Figure 3 and Figure 4.

SNMNMF_PrepData Preprocess the input data.

Description

This function is used to preprocess the input data to ensure the non-negativity.

Usage

[newInput, isdouble] = SNMNMF_PrepData(Input);

Arguments

0	
Input	A structure variable including three components:
Input.data	A matrix combing two data blocks sequentially to be factorized
	$(e.g., Input.data = [X_1, X_2]).$
Input.XBlockInd	A matrix of size 2×2 . The two elements of the <i>i</i> th row give the
	start and end column indexes in <i>Input.data</i> for data matrix X_i
	(i = 1, 2).
Input.netAdj	An adjacency matrix for the relationships between the features in
	<i>Input.data</i> , that is, Input.netAdj = $[A_{11}, A_{12}; A_{12}^T, A_{22}]$.
Output	
newInput	A structure variable including
newInput.data	A non-negative matrix which is transformed from Input.data.
newInput.XBlockInd	A matrix of size 2×2 which is similar with <i>Input.XBlockInd</i> .
newInput.netAdj	An adjacency matrix transformed from Input.netAdj.
isdouble	A binary variable (1 indicates changes have been made, and 0 is for
	no change, that is, <i>Input = newInput</i>).
SNMNMF_comodule	Obtain the md-modules.

NMNMF_comodule	Obtain the md-modules.
MNMF_comodule	Obtain the md-modules.

Description

This function computes the optimal factorization results through running SNMNMF for multiple times, then identify the md-modules based on the factorized matrices W, H_i .

Usage

[W, H1, H2, Comodule, params] = SNMNMF_comodule(Input, params);

0	
Input	A structure variable defined as that in function 'SNMNMF_PrepData',
	but the <i>Input.data</i> is a non-negative matrix.
params	A structure variable, except for <i>params.isdouble</i> , <i>params.K</i> , <i>params.nloop</i> , <i>params.maxiter</i> , <i>params.thrd_module</i> , defined similar as those in the function ' <i>jNMF_comodule</i> ' described above. There are five specific
	components, including
params.thrXr, para	ms.thrXc
	parameters referring to the basis matrix W-related term, the weight matrices H_i -related terms in the objective function to limit the growth
of W ,	
01 // ,	males II anoma managériales
	make H_i sparse, respectively.
params.thrNet11, p	params.thrNet12, params.thrNet22
	parameters referring to the network A_{11}, A_{12}, A_{22} related constraints
	in the objective function.
Output	
W, H1, H2	Factorization results such that <i>Input.data</i> $\approx [WH_1, WH_2]$. W is
	the basis matrix of size $m \times K$, H_1 is the weight matrix of size $K \times n_1$
	and H_2 is the weight matrix of size $K \times n_2$, where $K = params.K$.
C 11	
Comodule	Identified md-modules recorded in a $(K \times 3)$ cell array, which has the same definition as that in function ' <i>jNMF_comodule</i> '.
params	Compared to 'params' as input, there are something new added in it,
	including <i>params.records</i> and <i>params.iterNumList</i> which are similar with those in the function ' <i>jNMF_comodule</i> ', where $N = 2$.

SNMNMF_algorithm

SNMNMF algorithm.

Description

This implements the SNMNMF algorithm.

Usage

[W, H1, H2, TerminalObj, iter] = SNMNMF_algorithm(X1, X2, A11, A12, A22, params);

Arguments

-	
X1, X2	The non-negative input matrices.
A11, A12, A22	Adjacency matrices for the relationships within and between the
	features in X_1 and X_2 .
params	A structure variable including <i>params.isdouble</i> , <i>params.K</i> ,
	params.thrd_module, params.thrXr, params.thrXc, params.thrNet11,
	params.thrNet12, params.thrNet22. They are the same as those in
	function 'SNMNMF_comodule'.
Output	
W, H1, H2	Factorization results like those in function 'SNMNMF_comodule'.
TerminalObj	A (<i>iter</i> \times 3) matrix each row of which records the values of all the
	terms in the objective function and the sum of them in each iteration.

SNMNMF_module

Identify the md-modules from factorized matrix.

Description

Based on the factorized matrix W, H_1 or H_2 , identify the md-module members for each type of features.

Usage

module = SNMNMF_module(H, t, isdouble);

Arguments

H, t, isdouble	They are defined as those in function ' <i>jNMF_module</i> '.
Output	
module	Defined as that in function 'jNMF_module'.

2.2 Output figures

SNMNMF_plot_X	Provide the heatmaps for the original input matrices.
---------------	---

Description

Draw the heatmaps for the original input matrices (X_1 and X_2). The arguments and outputs of this function are similar with those in the function '*jNMF_plot_X*' of jNMF with N = 2.

Usage

SNMNMF_plot_X(X, XInd, fig, figure_title, colormap_type);

SNMNMF_plot_results Show the heatmaps of a identified md-module.

Description

Show the heatmaps of a selected identified md-module (circled in yellow lines). The arguments and outputs of this function are similar with those in the function '*jNMF_plot_result*' with N = 2.

Usage

SNMNMF_plot_results(X, XInd, FeatureType, fig, figure_title, colormap_type, vectorForRank);

SNMNMF_plot_correlation	Demonstrate the correlations between the original
	data and the reconstructed one.

Description

Demonstrate the correlations between the original data X_i and the reconstructed one $newX_i$ = WH_i using boxplot (i = 1, 2). The arguments and outputs of this function are similar with those in the function '*jNMF_plot_correlation*' with N = 2.

Usage

corrMat = SNMNMF_plot_correlation(X, newX, XInd, newXInd, fig, figure_title);

SNMNMF_plot_distribution Demo	nstrate the module size distributions.
-------------------------------	--

Description

This function provides the histograms for the size distributions of two types of features in the identified md-modules. The arguments and outputs of this function are similar with those in the function '*jNMF_plot_distribution*' with N = 2.

Usage

SNMNMF_plot_distribution(nSample, XInd, Comodule, FeatureType, fig, figure_title);

2.3 Output text files

Index2LabelForModuleContent

Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

Output Module2TXT *Output the feature indexes of the identified md-modules.*

Description

This function is the same as that in jNMF.

3 sMBPLS

sMBPLS (sparse Multi-Block Partial Least Square) extends the standard PLS method to discover associations between multiple input matrices $(X_1, X_2, ..., X_N; N \ge 1, X_i \in \mathbb{R}^{p \times n_i}$ and a response matrix $(Y \in \mathbb{R}^{p \times m})$ in a sparse manner. It identifies md-modules in which a subset of heterogeneous input features jointly explain a subset of the response variables. This problem is defined as,

$$\max_{w_i,q,b_i} \operatorname{cov}(t,u) - \sum_{i=1}^N \lambda_i \|w_i\|_1 - \tau \|q\|_1$$

with $t_i = X_i w_i, u = Yq, t = \sum_{i=1}^N b_i t_i$
s.t. $\|w_i\|_2^2 = 1, \|q\|_2^2 = 1, \sum_{i=1}^N b_i^2 = 1.$

3.1 Algorithm

Run_sMBPLS	The main function for sMBPLS.
------------	-------------------------------

Description

This is the main function for sMBPLS which integrates all the related functions to achieve it.

Usage

Run_sMBPLS(Input);

Arguments

Input A structure variable (Section 5).

Output

It saves all the results in the directory './MIA/sMBPLS/sMBPLS_Results/', including sMBPLS_Results.mat, sMBPLS_RunRecords.txt, sMBPLS_Results.txt, several folders and figures, which record the similar contents with those in function 'Run_jNMF' of jNMF as shown in Figure 2, Figure 3 and Figure 4.

meanc	Preprocess the input matrices.
Description	
This function	centers the input data across the samples to enable the mean of each column of
the input matrix	to be zero.
Usage	
[Zm,mz] = m	eanc(Z);
Arguments	
Z	A matrix.
Output	
Zm	The centered matrix.
mz	A row vector. $mz(i)$ is the mean of $Z(:,i)$.
sMBPLS_cor	nodule Obtain the md-modules.

Description

This function returns all the md-modules by running SMBPLS for multiple times.

Usage

[nfactor, W, Q, WT, WU, TT, UU, sT, sU, XX, YY, Comodule, params] = sMBPLS_comodule(X, Y, XInd, YInd, FeatureType, params);

Arguments	
Х	The input matrix of size $(p \times n)$ combing N data blocks (e.g., $X = [X_1,, X_N]$).
Y	The response matrix of size $(p \times m)$ combing M data blocks (e.g., $Y = [Y_1,, Y_M]$). Generally, $M = 1$.
XInd	A matrix of size $N \times 2$. The two elements of the <i>i</i> th row give the start and end column indexes in X for data matrix X_i $(i = 1,, N)$.
YInd	A matrix of size $M \times 2$. It is for Y defined similarly with XInd.
FeatureType	A $(1 \times (N + M))$ cell array. FeatureType{i} records the name of <i>i</i> th
i cuture rype	type of features (e.g., <i>FeatureType</i> = { 'microRNA expression', 'CNV',
	'DNA Methylation', 'Gene expression' }.
params	A structure variable including
params.nfactor	A pre-defined number of identified md-modules.
params.nfold	A positive integer which is the number of folds used for cross-validation (CV) procedures. Generally, we set <i>params.nfold</i> = 5 or 10.
params.maxiter	The maximal number of iterations for sMBPLS algorithm.
params.tol	The precision for the convergence of sMBPLS algorithm.
params.param	A $(l \times 1)$ cell array restoring all the combinations of parameters to be selected. <i>params.param</i> { <i>i</i> } contains one group of parameters used in the algorithm, including thrXc and thrYc (controlling the number of selected features of X and Y in the identified md-modules), thrXr and thrYr (thrXr = thrYr, controlling the number of selected samples in the identified md-modules), maxiter (maxiter = params.maxiter), tol (tol = params.tol).
Output	
-	
nfactor	The number of identified md-modules (<i>nfactor</i> \leq <i>params.nfactor</i>).
W Q	A $(n \times nfactor)$ matrix, $W(:,i)$ is the weight vector for X in <i>i</i> th md-module. A $(m \times nfactor)$ matrix, $Q(:,i)$ is the weight vector for Y in <i>i</i> th
WT	md-module. A $(N \times nfactor)$ matrix, $WT(:,i)$ is the super weight vector for X in
WU	<i>i</i> th md-module. A ($M \times nfactor$) matrix, $WU(:,i)$ is the super weight vector for Y in <i>i</i> th md-module.
TT	A $(p \times (N \times nfactor))$ matrix, $TT(:, N \times (i-1)+j)$ is the score vector for X_j in <i>i</i> th md-module $(i = 1,, nfactor; j = 1,, N)$.
UU	A $(p \times (M \times nfactor))$ matrix, $UU(:, M \times (i - 1) + j)$ is the score vector for Y_j in <i>i</i> th md-module $(i = 1,, nfactor; j = 1,, M)$. Generally, $M = 1$.
sT	A ($p \times$ nfactor)) matrix, sT(:, i) is the super score for X in i th md-module ($i = 1,,$ nfactor).
sU	A $(p \times nfactor)$ matrix, $sU(:, i)$ is the super score for Y in <i>i</i> th md-module $(i = 1,, nfactor)$.
XX, YY	The new matrix after removing the signals of identified md-modules from X and Y .
Comodule	The md-modules are recorded in a $(nfactor \times (M + N + 1))$ cell array which is similar to that in the function ' <i>jNMF_comodule</i> '.
params	Compared to 'params' as input, there are something new added in it, including
params.iterNumList	A (<i>nfactor</i> \times 1) vector, where each element is the number of iterations for each round of running.

the <i>i</i> th md-module, and <i>iter = params.iterNumList(i)</i> , $i = 1,,nfactor$.params.randRowPartitionsA (<i>params.nfold</i> ×1) cell array. For n-fold CV procedure, <i>p</i> samples are partitioned into <i>params.nfold</i> groups equally. <i>params.randRowPartitions{i}</i> records the sample indexes in the <i>i</i> th group ($i = 1,, params.nfold$).params.cv_scoresA matrix where <i>params.cv_scores(i, j)</i> is the cv score for the <i>i</i> th group of parameters when identify the <i>j</i> th md-module.params.paramsidx_usedA (<i>nfactor</i> ×1) vector. <i>params.paramsidx_used(i)</i> is the index of selected parameters for identifying the <i>i</i> th md-module.	params.records	A (<i>nfactor</i> \times 1) cell array. <i>params.records</i> { <i>i</i> } is a (<i>iter</i> \times (<i>M</i> + <i>N</i> + 2)) matrix where each row records the values of all the terms in the objective function and the sum of them in each iteration when identify
A (<i>params.nfold</i> ×1) cell array. For n-fold CV procedure, p samples are partitioned into <i>params.nfold</i> groups equally. <i>params.randRowPartitions</i> {i} records the sample indexes in the <i>i</i> th group ($i = 1,, params.nfold$). params.cv_scores A matrix where <i>params.cv_scores</i> (i, j) is the cv score for the <i>i</i> th group of parameters when identify the <i>j</i> th md-module. params.paramsidx_used A (<i>nfactor</i> ×1) vector. <i>params.paramsidx_used</i> (i) is the index of		the <i>i</i> th md-module, and <i>iter</i> = <i>params.iterNumList</i> (<i>i</i>), $i = 1,,nfactor$.
are partitioned into params.nfold groups equally. params.randRowPartitions{i}params.cv_scoresare partitioned into params.nfold groups equally. params.randRowPartitions{i}params.cv_scoresA matrix where params.cv_scores(i, j) is the cv score for the ith group of parameters when identify the jth md-module.params.paramsidx_used A (nfactor $\times 1$) vector. params.paramsidx_used(i) is the index of	params.randRowPa	urtitions
records the sample indexes in the <i>i</i> th group $(i = 1,, params.nfold)$. params.cv_scores A matrix where $params.cv_scores(i, j)$ is the cv score for the <i>i</i> th group of parameters when identify the <i>j</i> th md-module. params.paramsidx_used A $(nfactor \times 1)$ vector. $params.paramsidx_used(i)$ is the index of		A (<i>params.nfold</i> \times 1) cell array. For n-fold CV procedure, p samples
params.cv_scores A matrix where $params.cv_scores(i, j)$ is the cv score for the <i>i</i> th group of parameters when identify the <i>j</i> th md-module. params.paramsidx_used A (<i>nfactor</i> ×1) vector. <i>params.paramsidx_used(i)</i> is the index of		
of parameters when identify the <i>j</i> th md-module. params.paramsidx_used A (<i>nfactor</i> \times 1) vector. <i>params.paramsidx_used</i> (<i>i</i>) is the index of		
params.paramsidx_used A (<i>nfactor</i> \times 1) vector. <i>params.paramsidx_used</i> (<i>i</i>) is the index of	params.cv_scores	A matrix where <i>params.cv_scores</i> (i, j) is the cv score for the <i>i</i> th group
A (<i>nfactor</i> \times 1) vector. <i>params.paramsidx_used</i> (<i>i</i>) is the index of		of parameters when identify the <i>j</i> th md-module.
	params.paramsidx_	used
		A (<i>nfactor</i> $\times 1$) vector. <i>params.paramsidx_used(i)</i> is the index of

sMBPLS_algorithm sMBPLS algorithm.

Description

This implements the sMBPLS algorithm.

Usage

[success, w, q, b, a, T, U, t, u, XX, YY, TerminalObj, iter] = sMBPLS_algorithm(X, Y, XInd, YInd, param);

X, Y, XInd, YInd	Defined the same as those in function 'sMBPLS_comodule'.
param	A structure variable including six components:
param.maxiter, paran	m.tol
	Same as those in function 'sMBPLS_comodule'.
param.thrXc, param	ı.thrYc
	Two positive integers which are two thresholds for selecting features
	of X and Y in the identified md-modules.
param.thrXr, param	.thrYr
· ·	param.thrXr = param.thrYr. A positive integer which is a threshold
	for selecting samples in the identified md-modules.
Output	
success	An indicator to show if this algorithm runs successfully or not
	(1 for success, 0 for failure).
w, q	Weight vectors for X, Y .
b, a	Super weight vectors for X, Y .
Т	A $(p \times N)$ matrix, $T(:,i)$ is the score vector for X_i $(i = 1,, N)$.
U	A $(p \times M)$ matrix, $U(:,i)$ is the score vector for Y_i $(i = 1,, M)$.
	Generally, $M = 1$.
t, u	Super score vectors for X, Y .
XX, YY	The new matrices after removing the signals of current md-modules
	from X and Y.
iter	The number of iterations to indicate when the algorithm stops.
TerminalObj	A (<i>iter</i> \times (2 + N + M)) matrix in which each row records the values
-	of all the terms in the objective function and the sum of them in each
	iteration.

This function is used to incorporate all the parameters into a structure variable 'newparams'.

Usage

newparams = sMBPLS_params(params);

Arguments

params	A structure variable including ms.tol, params.nfold, params.nfactor
paramis.maxicei, para	They are the same as those in the function ' <i>sMBPLS_comodule</i> '.
params.thrXYr_list	
	This is a column vector recording the thresholds for selection samples.
params.thrXc_list	
	A $(1 \times N)$ cell array. <i>params.thrXc_list</i> $\{i\}$ is a column vector, which includes several thresholds for selection features in data matrix X_i $(i = 1,, N)$.
params.thrYc_list	
	A $(1 \times M)$ cell array. <i>params.thrYc_list</i> $\{i\}$ is a column vector, which includes several thresholds for selection features in Y_i $(i = 1,, M)$.
Output	
newparams	A structure variable which is the same as the input argument ' <i>params</i> ' in ' <i>sMBPLS_comodule</i> '.
sMBPLS_select_param	Select a group of proper parameters used in sMBPLS algorithm.

Description

Using a cross-validation (CV) procedure to select a group of proper parameters.

Usage

[param_idx, cv_scores]	= sMBPLS_select_param(X, Y, XInd, YInd, params);
Arguments	
X, Y, XInd, YInd params	Defined as those in function ' <i>sMBPLS_comodule</i> '. A structure variable including <i>params.param, params.randRowPartitions</i> , which are both the same as the output argument ' <i>params</i> ' in function ' <i>sMBPLS_comodule</i> '.
Output	
param_idx cv_scores	The index of selected optimal parameters in params.param. A column vector recording the CV scores for all groups of parameters.
sMBPLS_getCVscore	Calculate the CV score for one group of parameters.

Description

By using a n-fold cross-validation (CV) procedure for one group of parameters, it will obtain the corresponding CV score to assess this group of parameters. The smaller the better.

Usage

```
cv_score = sMBPLS_getCVscore(X, Y, XInd, YInd, param, randRowPartitions);
```

Arguments

X, Y, XInd, YInd, paramDefined the same as those in function 'sMBPLS_algorithm'.randRowPartitionsDefined the same as 'params.randRowPartitions' in the output of function 'sMBPLS_comodule'.	
Output	
cv_score	A score for this group of parameters 'param' in the input arguments.
variable_sparse	Make the vector sparse.
Description	
Make the input vec	tor sparse based on the input threshold.
Usage	
[sw, err] = variable.	_sparse(w, thrd, msg);
Arguments	
W	A vector.
thrd	A threshold for the degree of sparsity of w.
msg	A string representing the name of variable w.
Output	
SW	The sparse vector.
err	An indicator (1 indicates it is done successfully, and 0 for not).
newMatrix	Obtain a new matrix.

Description

Remove the signals of the current identified md-module from the current data matrix X, and obtain a new matrix XX.

Usage

XX = newMatrix(X, t, thrd, msg1, msg2);

Arguments

Х	A matrix.
t	The latent variable for data X.
thrd	A threshold.
msg1	A string representing the name of variable t.
msg2	A string representing the name of variable X.
Output	
XX	A new matrix removed signals from matrix X.

3.2 Output figures

sMBPLS_plot_XY	Provide the heatmaps for the original or reordered input
	matrices.

Description

Draw the heatmaps of the original input matrices (X, Y) by ignoring the input argument '*vectorForRank*' or the heatmaps of reordered input matrices ordered based on the variable

vectorForRank' where the signals of the identified md-module will be located in the four corners of this heatmap.

Usage

sMBPLS_plot_XY(X, Y, XInd, YInd, fig, figure_title, colormap_type, vectorForRank);

Arguments

X, Y, XInd, YInd	Defined as those in the function 'sMBPLS_comodule'.	
fig, figure_title, colorm	ap_type	
	Defined as those in the function ' <i>jNMF_plot_X</i> ' of jNMF.	
vectorForRank	A structure variable including	
vectorForRank.t	The scores used for ordering samples. It is one column of matrix sT	
	in the output of function 'sMBPLS_comodule'.	
vectorForRank.w, vectorForRank.q		
	The weight vectors for X, Y related to a specific md-module,	
	respectively. They are respectively one column of matrix W , Q in the	
	output of function 'sMBPLS_comodule'.	
Dutput		

Output

The heatmaps for the original or reordered input data matrices.

sMBPLS_plot_results	Demonstrate the heatmaps of a specific md-module and the
	scatterplots for the correlation between the selected features.

Description

Show the heatmaps of a selected md-module (circled in yellow lines), and the scatterplots for the correlations between the selected features.

Usage

sMBPLS_plot_results(X, Y, XInd, YInd, FeatureType, fig, figure_title, colormap_type, vectorForRank); Arguments

X,	Y,	XInd,	YInd,	fig,	figure_	title,	colormap_type	;
----	----	-------	-------	------	---------	--------	---------------	---

, .,,	-Sare-une, coronnap-oppe
	Defined the same as those input arguments in 'sMBPLS_plot_XY'.
vectorForRank	A structure variable including six components. Except for the three
	ones in the input argument vectorForRank of 'sMBPLS_plot_XY',
	there are also
vectorForRank.T	A $(p \times N)$ matrix. $T(:,i)$ is the score vector for X_i $(i = 1,, N)$.
vectorForRank.U	A $(p \times M)$ matrix. $U(:, i)$ is the score vector for Y_i $(i = 1,, M)$.
vectorForRank.com	odule
	A $(1 \times (N + M + 1))$ cell array. <i>vectorForRank.comodule</i> $\{i\}$ records
	the <i>i</i> th feature indexes of a selected md-module. The first column is
	for selected samples.
FeatureType	A $(1 \times (N + M))$ cell array. FeatureType{i} records the name of <i>i</i> th
	type of features (e.g., <i>FeatureType</i> = { ' <i>microRNA expression</i> ', ' <i>CNV</i> ',
	'DNA Methylation', 'Gene expression' }.

Output

The heatmaps for certain selected md-module to demonstrate the patterns of this md-module as shown in Figure 4.

The scatterplots for the correlation between the selected features as shown in Figure 5.

sMBPLS_plot_distribution D	emonstrate the module size distributions.
----------------------------	---

This function provides histograms for the size distributions of all the components in the identified md-modules.

Usage

sMBPLS_plot_distribution(nSample, Ind, Comodule, FeatureType, fig, figure_title);

Arguments

Ind	<i>Ind</i> = [XInd; YInd]. XInd, YInd are the same as those in function
	'sMBPLS_comodule'.
Comodule	It is the same as that in the output of function ' <i>sMBPLS_comodule</i> '.
nSample, FeatureType	, fig, figure_title
	Similar with those in function ' <i>jNMF_plot_distribution</i> '.

Output

Histograms for the size distributions of all the features in the identified md-modules.

3.3 Output text files

Index2LabelForModuleContent

Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

OutputModule2TXT	Output the feature indexes of the	<i>ie identified md-modules.</i>

Description

This function is the same as that described in jNMF.

4 SNPLS

SNPLS (Sparse Network-regularized PLS) is designed for one input matrix $(X \in \mathbb{R}^{p \times n})$ and one response matrix $(Y \in \mathbb{R}^{p \times m})$. It introduces network-regularized constraints, expressed as adjacency matrices $A \in \mathbb{R}^{n \times n}$ of a given interaction network G_1 for the features in X and/or $B \in \mathbb{R}^{m \times m}$ of another interaction network G_2 for Y. This problem is defined as,

$$\max_{g,d} cov(Xg, Yd) - \lambda_1 g^T L_X g - \lambda_2 d^T L_Y d - \lambda_3 ||g||_1 - \lambda_4 ||d||_1$$

s.t. $g^T g = 1, \ d^T d = 1.$

where $u = Xg, v = Yd, L_X, L_Y$ are the symmetric Laplacian matrices of network G_1, G_2 , repsectively.

4.1 Algorithm

Run_SNPLSThe main function for SNPLS.

Description

This is the main function for SNPLS, which integrates all the related functions to achieve it.

Usage

Run_SNPLS(Input);

Arguments

Input

A structure variable (Section 5).

Output

It saves all the results in the directory './MIA/SNPLS/SNPLS_Results/', including SNPLS_Results.mat, SNPLS_RunRecords.txt, SNPLS_Results.txt, several folders and figures, which record the similar contents with those in function 'Run_jNMF' of jNMF as shown in Figure 2, Figure 3 and Figure 4.

SNPLS_comodule	Obtain the co-modules (md-modules).
----------------	-------------------------------------

Description

This function returns all the co-module (md-modules) by running SNPLS for multiple times.

Usage

[nfactor, G, D, U, V, XX, YY, Comodule, params] = SNPLS_comodule(X, Y, A, B, FeatureType, params);

8	
Х	The input matrix of size $(p \times n)$.
Y	The response matrix of size $(p \times m)$.
А	The adjacency matrix for the interactions between the features in X ,
	where $A = (a_{ij}), a_{ij} = 1$ if features <i>i</i> and <i>j</i> are linked; $a_{ij} = 0$,
	otherwise.
В	The adjacency matrix defined similar with A for the features in Y .
FeatureType	A (1×2) cell array. FeatureType{i} records the name of <i>i</i> th type
	of features (e.g., <i>FeatureType</i> = { 'microRNA expression', 'Gene expression'}.
params	A structure variable including the components below:
params.nfactor, para	ms.nfold, params.maxiter, params.tol
	Defined the same as those in the function 'sMBPLS_comodule'.
params.param	A $(l \times 1)$ cell array recording all the combinations of parameters to
	be selected. params.parami contains one group of parameters used in
	the algorithm, including thrXc and thrYc (controlling the number of
	selected features of X and Y in the identified md-modules) thrXNet
	and thrYNet (parameters for the network-regularized constraints in
	the objective function), <i>maxiter</i> (<i>maxiter</i> = <i>params.maxiter</i>),
	tol (tol = params.tol).
params.thrd_module	e A positive vector of size 1×3 which stores the thresholds for selecting
	samples and features in X and Y .
Output	
nfactor, XX, YY, Com	nodule

mactor, 111, 1 1, com	
	Similar with those in the function 'sMBPLS_comodule' with
	N = M = 1.
G	A ($n \times nfactor$) matrix, $G(:,i)$ is the weight vector for X in the <i>i</i> th
	md-module.
D	A ($m \times nfactor$) matrix, $D(:,i)$ is the weight vector for Y in the <i>i</i> th
	md-module.
U	A $(p \times nfactor)$) matrix, $U(:,i)$ is the super score for X in the <i>i</i> th
	md-module ($i = 1,, nfactor$).

V	A ($p \times nfactor$)) matrix, $V(:,i)$ is the super score for Y in the <i>i</i> th
	md-module ($i = 1,, n factor$).
params	Compared to ' <i>params</i> ' as input, there are new components including
	params.iterNumList, params.records, params.randRowPartitions, params.cv_scores, params.paramsidx_used defined the same as the
	output argument in the function ' <i>sMBPLS_comodule</i> '.

SNPLS_algorithm	SNPLS algorithm.
-----------------	------------------

This implements the SNPLS algorithm.

Usage

SNPLS_params	Integrate all the parameters into an unified framework.
u, v	Score vectors for X and Y.
g, d	Weight vectors for X and Y .
	They are the same as those in the function 'sMBPLS_algorithm'.
success, TerminalObj	iter, XX, YY
Output	
to the standard PLS.	, , , , , , , , , , , , , , , , , , ,
	um.thrYc = param.thrXNet = param.thrYNet = 0, this algorithm reduces
If $param.thrXNet = param.thrXNet$	aram.thrYNet = 0, this algorithm reduces to sMBPLS for pairwise case.
	about Y if available.
	objective function used in the network-regularized constraint about <i>X. param.thrYNet</i> is similar with <i>param.thrXNet</i> used in the netowrk
	Two non-negative numbers. <i>param.thrXNet</i> is the parameter λ_1 in the
param.thrXNet, para	
	parameters λ_3 , λ_4 in the objective function.
	Two non-negative numbers which are respectively related to the
param.thrXc, param	.thrYc
	Defined the same as those in the function 'SNPLS_comodule'.
params.tol, params.	maxiter
param	A structure variable including
	network for the features in data X and Y, respectively.
LX, LY	Laplacian matrices of size $(n \times n)$ and $(m \times m)$ about the interaction
X, Y	The same as those in function 'SNPLS_comodule'.
Arguments	
[success, g, d, u, v, XX	X, YY, TerminalObj, iter] = SNPLS_algorithm(X, Y, LX, LY, param);
Usuge	

Description

This function is used to incorporate all the parameters into a structure variable 'newparams'.

Usage

newparams = SNPLS_params(params);

params	A structure variable including	
params.tol, params.maxiter, params.nfold, params.nfactor, params.thrd_module		
	Defined the same as those in the function 'SNPLS_comodule'.	
params.thrXNet_li	st This is a column vector recording the parameters for the network	

	constraint about X in the objective function.
params.thrYNet_list	This is a column vector recording the parameters for the network
	constraint about Y in the objective function.
params.thrXc_list	A column vector, which includes several thresholds for selecting
	features in data matrix X.
params.thrYc_list	A column vector, which includes several thresholds for selecting
	features in data matrix Y.
Output	
newparams	A structure variable defined the same as the input argument 'params'
*	in the function 'SNPLS_comodule'.

SNPLS_select_param Select a group of proper parameters used in SNPLS.

Description

Using a cross-validation (CV) procedure to select a group of proper parameters.

Usage

[param_idx, cv_scores] = SNPLS_select_param(X, Y, LX, LY, params);

Arguments

X, Y, LX, LY params	Defined the same as those in the function ' <i>SNPLS_algorithm</i> '. A structure variable including <i>params.param, params.randRowPartitions</i> , which are both the same as the output argument ' <i>params</i> ' in the
	which are both the same as the output argument params in the
	function 'SNPLS_comodule'.
Output	
param_idx	The index of the selected optimal parameters in params.param.
cv_scores	A column vector recording the CV scores for all groups of parameters.

SNPLS_getCVscore *Calculate the CV score for a group of parameters.*

Description

By using a n-fold cross-validation (CV) procedure for one group of parameters, it will obtain the related CV score to assess these parameters. The smaller the better.

Usage

```
cv_score = SNPLS_getCVscore(X, Y, LX, LY, param, randRowPartitions);
```

Arguments

X, Y, LX, LY, param are the same with those in the function 'SNPLS_algorithm'.

randRowPartitions is the same with 'params.randRowPartitions' in the output of function 'SNPLS_comodule'.

Output

cv_score The score for this group of parameters '*param*' in the input arguments.

PLS The standard PLS algorithm.

Description

This function is used to produce the initial vectors for SNPLS.

Usage

[success, g, d, u, v] = PLS (X, Y);

Arguments	
Χ, Υ	Two input matrices for the PLS algorithm.
Output	
success	An indicator to indicate whether PLS performs successfully or not (1 for success and 0 for failure).
g, d	The weight vectors for input data X and Y .
u, v	The score vectors for input data X and Y .

thresholding

Make the input vector sparse.

Description

Make the input vector sparse based on the input thresholds.

Usage

sw = thresholding(w,thrd,msg);

Arguments

w thrd	A vector. A threshold for the degree of sparsity of <i>w</i> .
msg	A string for the name of variable <i>w</i> .
Output	
SW	The sparse vector.

4.2 Output figures

SNPLS_plot_XY Provide the heatmaps for the original or reordered input matrices.

Description

It is a similar function as 'sMBPLS_plot_XY' described in sMBPLS.

Usage

SNPLS_plot_XY(X, Y, fig, figure_title, colormap_type, vectorForRank);

Arguments

-	
Х, Ү	The same as those in the function 'SNPLS_comodule'.
fig, figure title, colorm	nap_type
	Defined the same as those in the function ' <i>jNMF_plot_X</i> ' of jNMF.
vectorForRank	A structure variable including
vectorForRank.u	The scores used for ordering samples. It is one column of matrix U
	in the output of function 'SNPLS_comodule'.
vectorForRank.g, ve	ectorForRank.d
	The weight vectors for X and Y related to one identified md-module,
	respectively. They are respectively one column of matrix G , D in the
	outputs of function 'SNPLS_comodule'.

Output

The heatmaps for the original or reordered input data matrices.

SNPLS_plot_resultsDemonstrate the heatmaps of certain identified md-module
and the scatterplots for the correlation between the selected
features.

It is a similar function with 'sMBPLS_plot_results' described in sMBPLS.

Usage

SNPLS_plot_results(X, Y, FeatureType, fig, figure_title, colormap_type, vectorForRank);

Arguments

X, Y, fig, figure_title, c	olormap_type	
	The same as those of function 'SNPLS_plot_XY'.	
vectorForRank	A structure variable containing	
vectorForRank.g, vectorForRank.d, vectorForRank.u		
	Defined the same as those in the function 'SNPLS_plot_XY'.	
vectorForRank.com	odule	
	A (1×3) cell. It has the similar meaning with that in the function <i>'sMBPLS_plot_results'</i> .	
vectorForRank.v	The score vector for data Y. It is one column of matrix V in the output of function 'SNPLS_comodule'.	
FeatureType	Similar definition with that in the function 'sMBPLS_plot_results' with $N = M = 1$.	

Output

The heatmaps for certain selected md-module to demonstrate the patterns of this md-module. The scatterplots for the correlation between the selected features.

SNPLS_plot_distribution	Demonstrate the module size distributions.	
-------------------------	--	--

Description

This function provides histograms for the size distributions of all the components in the identified md-modules, which has the similar input arguments and output results.

Usage

SNPLS_plot_distribution(nSample, Ind, Comodule, FeatureType, fig, figure_title);

4.3 **Output text files**

Index2LabelForModuleContent

Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

OutputModule2TXT Output the feature indexes of identified md-modules.

Description

This function is the same as that described in jNMF.

5 Input data

To facilitate the usage, MIA package implements the four methods using the same structure variable to describe the input data. This variable, named *Input*, includes the following components:

Input.data: A matrix storing all the multi-dimensional data sequentially (e.g., *Input.data* = $[X_1, ..., X_N]$). Each row corresponds to the genomics features of a specific sample. Each type

of genomic data is assigned its own set of columns.

Input.XBlockInd: A matrix of size $N \times 2$. The two elements in *i*th row give the start and end column indexes in *Input.data* for the *i*th X matrix (i = 1, ..., N).

Input.YBlockInd: A matrix storing the response matrix Y for both sMBPLS and SNPLS. Its format is similar to *Input.XBlockInd*.

Input.netAdj: The symmetric adjacency matrix of a given network used for SNMNMF and SNPLS, where the features have the same order as in *Input.data*. This network combines the interactions between and within the variables in multiple types of variables. The element of this matrix equals to 1 for linked features in the network, and 0 otherwise.

Input.SampleLabel: A vector recording the labels of samples.

Input.FeatureLabel: A vector recording the feature names in *Input.data*. The *i*th label corresponds to the *i*th feature in *Input.data*.

Input.FeatureType: A vector recording the feature types in *Input.data*. Here we give an example: *Input.FeatureType* = {'Gene expression', 'microRNA expression', 'DNA methylation'}.

Input.params: A structure variable, storing all the parameters used in MIA.

- For these four methods, there are three common parameters, including
 - *Input.params.NCluster*: A pre-defined number of md-modules. For example, we may set *Input.params.NCluster* = 20.
 - *Input.params.maxiter*: The maximal iteration times in each algorithm. For example, we may set *Input.params.maxiter* = 100.
 - *Input.params.tol*: The precision for convergence of each algorithm. For example, we may set *Input.params.tol* = 10^{-6} .

For jNMF, there are two specific parameters:

- *Input.params.nloop*: The number of repeating times to run this algorithm. To obtain a robust and optimal solution, this algorithm is run for multiple times repeatedly, and the solution with the minimal value of objective function is accepted. For example, we may set *Input.params.nloop* = 50.
- Input.params.thrd_module: A non-negative vector of size $1 \times (N + 1)$ to select features in md-modules. Input.params.thrd_module(i+1) is the threshold for selecting the *i*th type of features in Input.data (i = 1, ..., N). The first one is for selecting samples. The larger they are, the smaller number of features are selected. Users can set it based on the size of md-modules they prefer to identify. For example, we may Input.params.thrd_module = ones(1, N + 1).

For SNMNMF, except for *Input.params.nloop* and *Input.params.thrd_module*, there are also:

- Input.params.thrNet11, Input.params.thrNet12, Input.params.thrNet22: The three non-negative numbers are set for the parameters respectively related to the network constraints about network A_{11} , A_{12} , A_{22} in the objective function, where A_{11} , A_{22} are respectively the adjacency matrices for the interaction networks within the features in data matrix X_1 , X_2 ; A_{12} is for the interaction network between the two types of features. User can choose which networks they prefer to use in the framework by setting the corresponding parameters. For example, if Input.params.thrNet11 = 0, the network A_{11} will not be used.

- Input.params.thrXr, Input.params.thrXc: The two non-negative numbers are set for the row related (or W), and column related (H_i) terms respectively in the objective function. It controls the degree of sparsity of matrix W, H. For example, we may set Input.params.thrXr = 10, Input.params.thrXc = 10.

For sMBPLS, there are:

- *Input.params.nfold*: A positive number used for *n*-fold cross-validation (CV) procedure. Generally, we set *Input.params.nfold* = 5 or = 10. This method applies CV procedure to select a proper group of parameters from all the combinations of these parameter lists described below.
- *Input.params.thrXYr_list*: A column vector with positive integers. They are candidates for thresholds in order to select samples in md-modules. For example, we may set *Input.params.thrXYr_list* = [20; 30].
- Input.params.thrXc_list, Input.params.thrYc_list: Two row vectors of size 1×N, 1× M with positive integers to control the degree of sparsity for the weight variables of input data X, Y, respectively. For example, we may set Input.params.thrXc_list = repmat({[20; 30]}, 1, N), Input.params.thrYc_list = repmat({[20; 30]}, 1, M), where N = size(Input.XBlockInd, 1), M = size(Input.YBlockInd, 1).

For SNPLS, there are:

- Input.params.nfold: It is the same as that in sMBPLS.
- Input.params.thrXc_list, Input.params.thrYc_list: They have the same meaning as those in sMBPLS for the situation of N = 1, M = 1. Thus, they are defined as column vectors. For example, we may set Input.params.thrXc_list = [0.01; 0.03; 0.05], Input.params.thrYc_list = [0.1; 0.3; 0.5].
- Input.params.thrXNet_list, Input.params.thrYNet_list: The two column vectors with non-negative values. They have the similar function with Input.params.thrNet11 in SNMNMF. Input.params.thrXNet_list, Input.params.thrYNet_list are respectively for the networks within the features in input data X, and response data Y. For example, we may set Input.params.thrXNet_list = [1; 5]; Input.params.thrYNet_list = [1; 5].
- Input.params.thrd_module: It is a non-negative matrix of size 3×2 . The first column Input.params.thrd_module(i, 1) is the threshold for selecting the *i*th feature in Input.data (i = 1, 2, 3). And the second column Input.params.thrd_module(i, 2) is a percentage in case of no features selected using the threshold. The first row is for selecting samples. The larger the thresholds are, the smaller number of features are selected. Users can set it based on the size of md-modules they prefer to identify. For example, we may set Input.params.thrd_module = [1, 0.5; 1, 0.5; 1, 0.5].

In addition, for the components that are not used in certain methods (e.g., *Input.YBlockInd* in jNMF and SNMNMF and *Input.netAdj* in jNMF and sMBPLS), users can set them null or just ignore them.

With this data structure, MIA is able to partition *Input.data* into corresponding data matrices as input for each method automatically.

Next, we provide an example for constructing the input data used in SNMNMF. Suppose that one wants to identify 50 microRNA-gene co-modules by integrate gene expression profiles $(X_1 \in \mathbb{R}^{385 \times 12456})$ and micro-RNA expression profiles $(X_2 \in \mathbb{R}^{385 \times 559})$ across the same set of samples, as well as the gene interaction network G_1 , gene-microRNA interaction network G_2 . The network G_1 can be expressed by the adjacency matrix $A_{11} = (a_{ij})_{12456 \times 12456}$, where $a_{ij} = 1$ if gene *i* and gene *j* is linked in the network G_1 . Similarly, G_2 is expressed by the

adjacency matrix $A_{12} \in \mathbb{R}^{12456 \times 559}$. If the microRNA interaction network is not available, the corresponding adjacency matrix A_{22} is defined as $A_{22} = \text{zeros}(559, 559)$.

Then, we could define the input data *Input* as below:

 $Input.data = [X_1, X_2];$ Input.XBlockInd = [1, 12456; 12457, 13015]; Input.YBlockInd = []; $Input.netAdj = [A_{11}, A_{12}; A_{12}^T, A_{22}];$ $Input.SampleLabel = \{`TCGA-24-1105-01A';...;`TCGA-13-0793-01A'\};$ $Input.FeatureLabel = \{`SFRS8';...;`SCN3A';`hsa-mir-488';...;`hsa-mir-874'\};$ $Input.FeatureType = \{`Gene', `miRNA'\};$ Input.params.NCluster = 50; Input.params.thrl = 100; $Input.params.tol = 10^{-6};$ $Input.params.thrd_module = [1,0.5;1,0.5;1,0.5];$ $Input.params.thrNet11 = 10^{-4}; Input.params.thrNet12 = 0.01; Input.params.thrNet22 = 0;$ Input.params.thrXr = 10; Input.params.thrXc = 10;

Figure 1: Illustration of an example of the input data for SNMNMF.

Figure 2: An overview of the output results for *SNMNMF*. The details about each part are shown in Figure 3 and Figure 4.

Figure 3: The details about the output files shown in Figure 2. (a) In each folder, there are a number of text files, each of which records one type of components in one identified co-modules. (c) A MATLAB data file storing the computation results, including the factorized matrices W, H1, H2, the 50 identified co-modules, and the parameters used in this method. (d) The first text file records the feature indexes of all the identified md-modules, in which the first three numbers are the number of samples, genes, microRNAs in one identified md-modules, and the next three columns show the indexes of selected samples, genes and microRNA, respectively. Each list are included in the square brackets. The second text file records some information during the iterations. The first line shows the parameters used in SNMNMF. The rest lines show the changes of objective function during multiple-round running. It just records the results better than the previous round. *bestObj* stores values of the terms in the objective function in the '*iloop*'th round, and *sum_Obj* is the sum of these terms.

Figure 4: An example for the output figures in Figure 2b.

Figure 5: An example for the output figures for sMBPLS.

6 Guide for the MIA users without a MATLAB license

Guide:

1. Operating System requirements: Windows 64-bit.

2. Download and install the Windows 64-bit version of the MATLAB Runtime for R2015b from the MathWorks Web site by navigating to http://www.mathworks.com/products/compiler/mcr/index.html.

3. Prepare the input data and store them in the path "./MIA/InputData/". In this folder, we provide the input data for each method as examples. For each method, there are two Excel files (one is for input data and another one is for input parameters), each of which includes several sheets. Users need to arrange their data in the same way as those example Excel files in this folder we provided. Note that, each sheet is renamed as the corresponding variable name as described in our manuscript.

4. Open the Command Prompt (cmd.exe). Set the current path as where the MIA package is located, e.g., "D:/MIA".

5. Produce MATLAB data files (*.mat) by running PreInputData.exe. Type the command as below:

 $\label{eq:mids} D: \MIA> PreInputData.exe ./InputData/DataForjNMF.xlsx ./InputData/ParametersForjNMF.xlsx ./InputData/InputDataForjNMF.mat jNMF$

or

 $\label{eq:mids} D: \MIA> PreInputData.exe \ ./InputData/DataForSNMNMF.xlsx \ ./InputData/ParametersForSNMNMF.xlsx \ ./InputData/InputDataForSNMNMF.mat \ SNMNMF$

or

or

The first two parameters are the file names storing input data and parameters; the next parameter is the output file name. The last one is the selected method. The produced new data files (e.g., "InputDataForjNMF.mat") are saved in the path "./MIA/InputData/".

6. Run MIA.exe. Type the command as below:

D:\MIA> MIA.exe ./InputData/InputDataForjNMF.mat jNMF

or

D:\MIA> MIA.exe ./InputData/InputDataForSNMNMF.mat SNMNMF

or

D:\MIA> MIA.exe ./InputData/InputDataForsMBPLS.mat sMBPLS or

D:\MIA> MIA.exe ./InputData/InputDataForSNPLS.mat SNPLS

The first one is about the input data file and the second one is about the selected method. For each method, the results are saved their own directory. For example, the results of running jNMF are saved in "./MIA/jNMF/jNMF_Results/".