Package 'MIA'

Version 1.0

Date 2016-01-14
Title Matrix Integration Analysis
Author Jinyu Chen chjy@amss.ac.cn, Shihua Zhangzsh@amss.ac.cn
Depends MATLAB (\geq R2013a)
Description Detecting multi-dimensitional modules (md-modules) in diverse genomics data as well as molecular network data using the methods in MIA package.
URL http://page.amss.ac.cn/shihua.zhang/software.html

Here, we provide a guide for MIA package. It describes all the MATLAB functions in MIA in detail. For each method, these MATLAB functions mainly perform the tasks including realizing a specific algorithm, drawing figures and outputting text files about the identified md-modules.

1 jNMF

jNMF (joint Non-negative Matrix Factorization) enables users to simultaneously factor two or more types of genomic data sharing the same set of samples. Here, we adopt multiplicative update algorithm to solve the following problem:

$$
\min _{W, H_{i}} \sum_{i=1}^{N}\left\|X_{i}-W H_{i}\right\|_{F}^{2}, \quad \text { s.t. } W \geq 0, H_{i} \geq 0, i=1, \ldots, N .
$$

1.1 Algorithm

$$
\text { Run_jNMF } \quad \text { The main function for } j N M F \text {. }
$$

Description

This is the main function for jNMF, which integrates all the related functions to achieve it.

Usage
 Run_jNMF(Input);

Arguments

Input A structure variable. The details about its construction can be found in Section 5 .

Output

It saves all the results in the directory './MIA/jNMF/jNMF_Results/'.
jNMF_Results.mat The essential computed variables.
jNMF_RunRecords.txt The updated values of the objective function in each round of running.
$j N M F _$Results.txt The numbers and indexes of features separated in comma. Each row records the information for each identified md-module.
Several folders Each folder contains the lists of all the identified md-modules for one type of features as shown in Figure 2a and Figure 3a.
Several figures As shown in Figure [2b and Figure 4
jNMF_PrepData Preprocess the input data.

Description

This function is used to preprocess the input data to ensure its non-negativity.

Usage

[X, isdouble] = jNMF_PrepData(OX);

Arguments

OX A matrix.

Output

X
isdouble

A non-negative matrix, the transformation of data $O X$.
A binary variable (1 indicates changes have been made; 0 is for no change, that is, $X=O X$).

[^0]
Description

This function outputs the optimal factorization results through running jNMF for multiple times, then identify md-modules based on the factorized matrices $W, H_{i}(i=1,2, \ldots)$.

Usage

[W, H, Comodule, params] = jNMF_comodule(Input, params);

Arguments

Input	A structure variable including two components:
Input.data	A non-negative matrix combing N data blocks sequentially to be factorized, such as Input.data $=\left[X_{1}, X_{2}, \ldots, X_{N}\right]$.
Input.XBlockInd	A matrix of size $N \times 2$. The two elements of the i th row give the start and end column indexes in Input.data for data matrix X_{i} $(i=1, \ldots, N)$.
params	A structure variable including six components:
params.isdouble	A vector of size $N \times 1$. The i th element indicates whether the i th data matrix is transformed to ensure its non-negativity (0 for no change, and 1 for change).
params.K	The number of md-modules users prefer to identify.
params.nloop	The repeating times of jNMF. To ensure the robust of this method, this function repeats the algorithm for 'params.nloop' times.
params.maxiter	The maximal number of iterations for this algorithm.
params.tol	The precision for convergence of algorithm.
params.thrd_module	A positive vector of size $1 \times(N+1)$. Thresholds for selecting features in N data blocks. The first one is to select samples.
Output	
W, H	Factorization results such that Input.data $\approx W H . W$ is the basis matrix of size $m \times K$ and H is the weight matrix of size $K \times n$, where $K=$ params.K.
Comodule	Identified md-modules recorded in a $(K \times(N+1))$ cell array. Comodule $\{i, j\}$ records selected feature indexes of the j th type of variables in the i th identified md-module. The first column is for selected samples.
params	Compared to 'params' as input, there are something new added in it, including
params.records	A (nloop $\times 1$) cell array. params.records $\{i\}$ is a $($ iter $\times(N+1))$ vector, where each row records the values of all the terms in the objective function and the sum of them in each iteration.
params.iterNumList	A (nloop $\times 1$) vector, where each element is the number of iterations for each round of running.

jNMF_algorithm jNMF algorithm.

Description

This is jNMF algorithm.

Usage

[W, H, TerminalObj, iter] = jNMF_algorithm(X, XInd, params);

Arguments

X

XInd

A non-negative input matrix of size $m \times n$ combing N data matrices sequentially to be factorized (e.g., $X=\left[X_{1}, X_{2}, \ldots, X_{N}\right]$). A matrix of size $N \times 2$. The two elements of the i th row give the start
and end column indexes in X for data matrix $X_{i}(i=1, \ldots, N)$.
params A structure variable including params.K, params.maxiter, params.tol defined the same as that in the function ' $j N M F _$comodule'.

Output

W, H Factorization results like those in function ' $j N M F _$comodule'.
iter
The number of iterations when the algorithm stops.
TerminalObj
A (iter $\times(N+1))$ matrix in which each row records the values of all the terms in the objective function and the sum of them in each iteration.
jNMF_module Identify md-modules from factorized matrices.

Description

Based on the factorized matrix W or H_{i}, identify module members for each type of features.

Usage

module $=\mathrm{jNMF}$ _module $(\mathrm{H}, \mathrm{t}$, isdouble $)$;

Arguments

H A $(K \times m)$ non-negative matrix used for module identification.
$\mathrm{t} \quad$ A threshold value for selecting features.
isdouble
A binary variable (1 is for the number of features in matrix H is double than that of the original ones, and 0 is for no change).

Output

module
A $(K \times 1)$ cell array. modulei, 1 contains the feature indexes of the i th module.

1.2 Output figures

jNMF_plot_X Provide the heatmaps of the original input matrices.

Description

Draw the heatmaps of the original input matrices $\left(X_{1}, X_{2}, \ldots, X_{N}\right)$.

Usage

jNMF_plot_X(X, XInd, fig, figure_title, colormap_type);

Arguments

X
fig A positive integer for figure index.
figure_title A string for the title of figure.
colormap_type

XInd A matrix of size $N \times 2$. The two elements of the i th row give the start and end column indexes in X for data matrix $X_{i}(i=1, \ldots, N)$.
The input matrix combing N data matrices to be factorized (e.g., $X=\left[X_{1}, X_{2}, \ldots, X_{N}\right]$).

A string for the colormap of heatmaps. Options includes 'blue-yellow', 'green-red', 'yellow', 'blue-white-red', 'default'.

Output

The heatmaps for all the input data matrices as shown in Figure 4

Description

Show the heatmaps of a selected identified md-module (circled in yellow lines).

Usage

jNMF_plot_results(X, XInd, FeatureType, fig, figure_title, colormap_type, vectorForRank);

Arguments

X, XInd, fig, figure_title, colormap_type
They have the same definitions with those in function $j N M F \not{ }_{\neq}$plot_X. FeatureType A $(1 \times N)$ cell array. FeatureType $\{i\}$ records the name of i th type of features (e.g., FeatureType $=\{$ 'Gene expression', 'microRNA expression', 'CNV' $\}$). vectorForRank A structure variable containing four components: vectorForRank.w, vectorForRank.h

Two vectors for the selected md-module. For example, if one wants to demonstrate the i th md-module, vectorForRank. w is the i th column of basis matrix W and vectorForRank.h is the i th row of weight matrix H. vectorForRank.comodule

A $(1 \times(N+1))$ cell array. vectorForRank.comodule $\{i\}$ records the i th feature indexes of the selected md-module.
vectorForRank.hInd Similar with the input variable 'XInd' to ' X ', it records the indexes for 'vectorForRank.h'.

Output

The heatmaps for a selected md-module to demonstrate its patterns as shown in Figure 4.

jNMF_plot_correlation \quad| Demonstrate the correlations between the original data |
| :---: |
| and reconstructed data. |

Description

Demonstrate the correlations between the original data X_{i} and reconstructed data new $X_{i}=$ $W H_{i}$ using boxplots.

Usage

corrMat $=$ jNMF_plot_correlation(X, newX, XInd, newXInd, fig, figure_title);

Arguments

X, XInd, fig, figure_title
They have the same definitions with those in function ' $j N M F$ plot_ X '.
newX The reconstructed matrix combing N data matrices sequentially, that is, new $X=\left[W H_{1}, W H_{2}, \ldots, W H_{N}\right]$.
newXInd Similar with the input variable 'XInd' to ' X ', it records the indexes for matrix newX.

Output

corrMat
A matrix of size $m \times N$, where m is the number of samples and N is the input data matrices, respectively. corrMat (i, j) records the correlation between the i th rows of the original data $\left(X_{j}\right)$ and reconstructed data ($W H_{j}$).
Boxplots for input data matrices $X_{1}, X_{2}, \ldots, X_{N}$ as shown in Figure 4

Description

This function provides the histograms for the size distributions of $(N+1)$ types of features in the identified md-modules.

Usage

jNMF_plot_distribution(nSample, XInd, Comodule, FeatureType, fig, figure_title);

Arguments

XInd, FeatureType, fig, figure_title
They are the same as those in function ' $j N M F$ plot_results'.
nSample The number of samples.
Comodule It is the same as that in function ' $j N M F _$comodule’.
Output
Histograms for the size distributions of $(N+1)$ types of features in the identified md-modules as shown in Figure 4

1.3 Output into text files

Index2LabelForModuleContent
Output the identified md-modules into text files.

Description

Output a number of text files, each of which records the selected feature names.

Usage

Index2LabelForModuleContent(ModuleIndex, FeatureLabel, TypeName, ResultsFile);

Arguments

ModuleIndex
A $(K \times 1)$ cell array. ModuleIndex\{ $i\}$ records the indexes of the i th identified module for one type of features.
FeatureLabel A $(n \times 1)$ cell array recording all the names of one type of features.
TypeName A string for the feature type (e.g., TypeName $=$ 'Gene expression').
ResultsFile A string for the folder name to save these lists (e.g., TypeName $=$ 'Gene expression', ResultsFile $=$ ' $j N M F _r e s u l t s ’$, all the identified gene lists are saved in the directory: './jNMF_results/GeneLists/’.

Output

A number of text files (e.g., GeneList_1.txt, GeneList_2.txt,)
OutputModule2TXT
Output the feature indexes of the identified md-modules.

Description

Output the feature indexes of the identified md-modules into a text file.

Usage

OutputModule2TXT(Comodule, FeatureType, ResultsFile);

Arguments

Comodule It is the same as that in function ' $j N M F _$comodule’.
ResultsFile A string for the name of this text file.

Output

A text file named as $j N M F _$Results.txt (ResultsFile $=$' $j N M F _$Results'), recording the number and indexes of selected features separated by comma.

2 SNMNMF

SNMNMF (Sparse Network-regularized Multiple NMF) can incorporate the interactions within $\left(A_{11} \in \mathbb{R}^{n_{1} \times n_{1}}, A_{22} \in \mathbb{R}^{n_{2} \times n_{2}}\right)$ and between the two genomics variables ($A_{12} \in \mathbb{R}^{n_{1} \times n_{2}}$) into the $j N M F$ framework for pairwise case ($X_{1} \in \mathbb{R}^{p \times n_{1}}, X_{2} \in \mathbb{R}^{p \times n_{2}}$). Users can choose which networks they prefer to incorporate in the framework by setting the corresponding parameters. Besides, it also adds the sparsity constraints for basis matrix W and weight matrices H_{1} and H_{2}. With the network-regularized constraints, $S N M N M F$ makes the variables linked in these two networks more likely to be placed into the same module. With the sparsity constraints, it helps us choose key variables. These constraints both lead to the identified md-modules more biologically interpretable. This model is defined as follows:

$$
\begin{gathered}
\min _{W, H_{i}} \sum_{i=1}^{2}\left\|X_{i}-W H_{i}\right\|_{F}^{2}-\sum_{1 \leq i \leq j \leq 2} \lambda_{i j} \operatorname{Tr}\left(H_{i} A_{i j} H_{j}^{T}\right) \\
+\gamma_{1}\|W\|_{F}^{2}+\gamma_{2}\left(\sum_{i}\left\|h_{i}^{(1)}\right\|_{1}^{2}+\sum_{j}\left\|h_{j}^{(2)}\right\|_{1}^{2}\right) \\
\text { s.t. } \quad W \geq 0, H_{1} \geq 0, H_{2} \geq 0 .
\end{gathered}
$$

where $h_{i}^{(1)}$ is the i th column of H_{1}, and $h_{j}^{(2)}$ is the j th column of H_{2}.

2.1 Algorithm

| Run_SNMNMF \quad The main function for SNMNMF. |
| :--- | :--- |
| Description |

This is the main function for SNMNMF which integrates all the related functions to achieve it.

Usage

Run_SNMNMF(Input);

Arguments

Input A structure variable (Section 5).

Output

It saves all the results in the directory './MIA/SNMNMF/SNMNMF_Results/', including 'SNMNMF_Results.mat', 'SNMNMF_RunRecords.txt', 'SNMNMF_Results.txt', several folders and figures, which record the similar contents with those in function 'Run_jNMF' of jNMF as shown in Figure 2, Figure 3 and Figure 4

SNMNMF_PrepData
Preprocess the input data.

Description

This function is used to preprocess the input data to ensure the non-negativity.

Usage

[newInput, isdouble] = SNMNMF_PrepData(Input);

Arguments

$$
\begin{array}{ll}
\begin{array}{l}
\text { Input } \\
\text { Input.data }
\end{array} & \begin{array}{c}
\text { A structure variable including three components: } \\
\text { A matrix combing two data blocks sequentially to be factorized } \\
\text { (e.g., Input.data } \left.=\left[X_{1}, X_{2}\right]\right) .
\end{array} \\
\text { Input.XBlockInd } & \begin{array}{l}
\text { A matrix of size } 2 \times 2 . \text { The two elements of the } i \text { th row give the } \\
\text { start and end column indexes in Input.data for data matrix } X_{i} \\
(i=1,2) .
\end{array} \\
\text { Input.netAdj } & \begin{array}{l}
\text { An adjacency matrix for the relationships between the features in } \\
\text { Input.data, that is, Input.netAdj }=\left[A_{11}, A_{12} ; A_{12}^{T}, A_{22}\right] .
\end{array} \\
\text { Output } & \begin{array}{l}
\text { A structure variable including }
\end{array} \\
\text { newInput } & \text { A non-negative matrix which is transformed from Input.data. } \\
\text { newInput.data } \\
\text { newInput.XBlockInd A matrix of size } 2 \times 2 \text { which is similar with Input.XBlockInd. } \\
\text { newInput.netAdj } & \begin{array}{l}
\text { An adjacency matrix transformed from Input.netAdj. } \\
\text { isdouble }
\end{array} \\
& \begin{array}{l}
\text { A binary variable }(1 \text { indicates changes have been made, and } 0 \text { is for } \\
\text { no change, that is, Input }=\text { newInput }) .
\end{array}
\end{array}
$$

SNMNMF_comodule Obtain the md-modules.

Description

This function computes the optimal factorization results through running SNMNMF for multiple times, then identify the md-modules based on the factorized matrices W, H_{i}.

Usage

[W, H1, H2, Comodule, params] = SNMNMF_comodule(Input, params);

Arguments

Input A structure variable defined as that in function 'SNMNMF_PrepData', but the Input.data is a non-negative matrix.
params A structure variable, except for params.isdouble, params.K, params.nloop, params.maxiter, params.thrd_module, defined similar as those in the function ' $j N M F$ _comodule' described above. There are five specific components, including
params.thrXr, params.thrXc
parameters referring to the basis matrix W-related term, the weight matrices H_{i}-related terms in the objective function to limit the growth of W,
make H_{i} sparse, respectively.
params.thrNet11, params.thrNet12, params.thrNet22
parameters referring to the network A_{11}, A_{12}, A_{22} related constraints in the objective function.

Output

W, H1, H2 Factorization results such that Input.data $\approx\left[W H_{1}, W H_{2}\right] . W$ is the basis matrix of size $m \times K, H_{1}$ is the weight matrix of size $K \times n_{1}$ and H_{2} is the weight matrix of size $K \times n_{2}$, where $K=$ params. K.
Comodule Identified md-modules recorded in a $(K \times 3)$ cell array, which has the same definition as that in function ' $j N M F$ _comodule'.
params Compared to 'params' as input, there are something new added in it, including params.records and params.iterNumList which are similar with those in the function ' $j N M F$ _comodule', where $N=2$.

Description

This implements the SNMNMF algorithm.

Usage

[W, H1, H2, TerminalObj, iter] = SNMNMF_algorithm(X1, X2, A11, A12, A22, params);

Arguments

$\mathrm{X} 1, \mathrm{X} 2$
A11, A12, A22
params

The non-negative input matrices.
Adjacency matrices for the relationships within and between the features in X_{1} and X_{2}.
A structure variable including params.isdouble, params.K, params.thrd_module, params.thrXr, params.thrXc, params.thrNet11, params.thrNet12, params.thrNet22. They are the same as those in function 'SNMNMF_comodule'.

Output

W, H1, H2 Factorization results like those in function 'SNMNMF_comodule'.
TerminalObj A (iter $\times 3$) matrix each row of which records the values of all the terms in the objective function and the sum of them in each iteration.

Description

Based on the factorized matrix W, H_{1} or H_{2}, identify the md-module members for each type of features.

Usage

module $=$ SNMNMF_module $(\mathrm{H}, \mathrm{t}$, isdouble $) ;$

Arguments

H, t, isdouble \quad They are defined as those in function ' $j N M F _m o d u l e$ '.
Output
module Defined as that in function ' $j N M F _$module'.

2.2 Output figures

SNMNMF_plot_X
Provide the heatmaps for the original input matrices.

Description

Draw the heatmaps for the original input matrices (X_{1} and X_{2}). The arguments and outputs of this function are similar with those in the function ' $j N M F_{-}$plot_X' of jNMF with $N=2$.

Usage

SNMNMF_plot_X(X, XInd, fig, figure_title, colormap_type);

SNMNMF_plot_results
Show the heatmaps of a identified md-module.

Description

Show the heatmaps of a selected identified md-module (circled in yellow lines). The arguments and outputs of this function are similar with those in the function ' $j N M F$ _plot_result' with $N=2$.

Usage

SNMNMF_plot_results(X, XInd, FeatureType, fig, figure_title, colormap_type, vectorForRank);

$$
\begin{aligned}
& \text { SNMNMF_plot_correlation } \quad \begin{array}{l}
\text { Demonstrate the correlations between the original } \\
\text { data and the reconstructed one. }
\end{array}
\end{aligned}
$$

Description

Demonstrate the correlations between the original data X_{i} and the reconstructed one new X_{i} $=W H_{i}$ using boxplot $(i=1,2)$. The arguments and outputs of this function are similar with those in the function ' $j N M F$ plot_correlation' with $N=2$.

Usage

corrMat $=$ SNMNMF_plot_correlation(X, newX, XInd, newXInd, fig, figure_title);
SNMNMF_plot_distribution Demonstrate the module size distributions.

Description

This function provides the histograms for the size distributions of two types of features in the identified md-modules. The arguments and outputs of this function are similar with those in the function 'jNMF_plot_distribution' with $N=2$.

Usage

SNMNMF_plot_distribution(nSample, XInd, Comodule, FeatureType, fig, figure_title);

2.3 Output text files

Index2LabelForModuleContent
Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

Description

This function is the same as that in jNMF.

3 sMBPLS

sMBPLS (sparse Multi-Block Partial Least Square) extends the standard PLS method to discover associations between multiple input matrices $\left(X_{1}, X_{2}, \ldots, X_{N} ; N \geq 1, X_{i} \in \mathbb{R}^{p \times n_{i}}\right.$ and a response matrix $\left(Y \in \mathbb{R}^{p \times m}\right)$ in a sparse manner. It identifies md-modules in which a subset of heterogeneous input features jointly explain a subset of the response variables. This problem is defined as,

$$
\begin{aligned}
& \max _{w_{i}, q, b_{i}} \operatorname{cov}(t, u)-\sum_{i=1}^{N} \lambda_{i}\left\|w_{i}\right\|_{1}-\tau\|q\|_{1} \\
& \text { with } t_{i}=X_{i} w_{i}, u=Y q, t=\sum_{i=1}^{N} b_{i} t_{i} \\
& \text { s.t. }\left\|w_{i}\right\|_{2}^{2}=1,\|q\|_{2}^{2}=1, \sum_{i=1}^{N} b_{i}^{2}=1 \text {. }
\end{aligned}
$$

3.1 Algorithm

Run_sMBPLS The main function for sMBPLS.

Description

This is the main function for sMBPLS which integrates all the related functions to achieve it.

Usage

Run_sMBPLS(Input);

Arguments

Input A structure variable (Section 5).

Output

It saves all the results in the directory './MIA/sMBPLS/sMBPLS_Results/', including sMBPLS_Results.mat, sMBPLS_RunRecords.txt, sMBPLS_Results.txt, several folders and figures, which record the similar contents with those in function 'Run_jNMF' of jNMF as shown in Figure 2, Figure 3] and Figure 4
meanc Preprocess the input matrices.

Description

This function centers the input data across the samples to enable the mean of each column of the input matrix to be zero.

Usage

$[\mathrm{Zm}, \mathrm{mz}]=\operatorname{meanc}(\mathrm{Z})$;

Arguments

Z A matrix.

Output
$\mathrm{Zm} \quad$ The centered matrix.
$\mathrm{mz} \quad$ A row vector. $m z(i)$ is the mean of $Z(:, i)$.
sMBPLS_comodule
Obtain the md-modules.

Description

This function returns all the md-modules by running SMBPLS for multiple times.

Usage

[nfactor, W, Q, WT, WU, TT, UU, sT, sU, XX, YY, Comodule, params] = sMBPLS_comodule(X, Y, XInd, YInd, FeatureType, params);

Arguments	
X	The input matrix of size ($p \times n$) combing N data blocks (e.g., $X=\left[X_{1}, \ldots, X_{N}\right]$).
Y	The response matrix of size $(p \times m)$ combing M data blocks (e.g., $\left.Y=\left[Y_{1}, \ldots, Y_{M}\right]\right)$. Generally, $M=1$.
XInd	A matrix of size $N \times 2$. The two elements of the i th row give the start and end column indexes in X for data matrix $X_{i}(i=1, \ldots, N)$.
YInd	A matrix of size $M \times 2$. It is for Y defined similarly with XInd.
FeatureType	A $(1 \times(N+M))$ cell array. FeatureType $\{\mathrm{i}\}$ records the name of i th type of features (e.g., FeatureType $=\{$ 'microRNA expression', 'CNV', 'DNA Methylation', ‘Gene expression'\}.
params	A structure variable including
params.nfactor	A pre-defined number of identified md-modules.
params.nfold	A positive integer which is the number of folds used for cross-validation (CV) procedures. Generally, we set params.nfold $=5$ or 10 .
params.maxiter params.tol	The maximal number of iterations for sMBPLS algorithm. The precision for the convergence of sMBPLS algorithm.
params.param	A $(l \times 1)$ cell array restoring all the combinations of parameters to be selected. params.param $\{i\}$ contains one group of parameters used in the algorithm, including thrXc and thrYc (controlling the number of selected features of X and Y in the identified md-modules), thrXr and thrYr (thrXr = thrYr, controlling the number of selected samples in the identified md-modules), maxiter (maxiter = params.maxiter), tol $($ tol $=$ params.tol $)$.
Output	
nfactor	The number of identified md-modules (nfactor \leq params.nfactor).
W	A ($n \times n f$ actor) matrix, $W(:, i)$ is the weight vector for X in i th md-module.
Q	A ($m \times n$ factor $)$ matrix, $Q(:, i)$ is the weight vector for Y in i th md-module.
WT	A ($N \times$ nfactor) matrix, $W T(:, i)$ is the super weight vector for X in i th md-module.
WU	A ($M \times$ nfactor $)$ matrix, $W U(:, i)$ is the super weight vector for Y in i th md-module.
TT	A $(p \times(N \times n f a c t o r))$ matrix, $T T(:, N \times(i-1)+j)$ is the score vector for X_{j} in i th md-module $(i=1, \ldots$, nfactor $; j=1, \ldots, N)$.
UU	A $(p \times(M \times$ nfactor $))$ matrix, $U U(:, M \times(i-1)+j)$ is the score vector for Y_{j} in i th md-module ($i=1, \ldots$, nfactor; $j=1, \ldots, M$). Generally, $M=1$.
sT	A ($p \times$ nfactor $)$) matrix, $\mathrm{sT}(:, i)$ is the super score for X in i th md-module ($i=1, \ldots$, nfactor).
sU	A ($p \times$ nfactor $)$) matrix, $s U(:, i)$ is the super score for Y in i th md-module ($i=1, \ldots$, nfactor $)$.
XX, YY	The new matrix after removing the signals of identified md-modules from X and Y.
Comodule	The md-modules are recorded in a (nfactor $\times(M+N+1)$) cell array which is similar to that in the function ' $j N M F$ _comodule'.
params	Compared to 'params' as input, there are something new added in it, including
params.iterNumList	A (nfactor $\times 1$) vector, where each element is the number of iterations for each round of running.

params.records $\quad \mathrm{A}($ nfactor $\times 1)$ cell array. params.records $\{i\}$ is a $($ iter $\times(M+N+2))$ matrix where each row records the values of all the terms in the objective function and the sum of them in each iteration when identify the i th md-module, and iter $=$ params.iterNumList $(i), i=1, \ldots, n f a c t o r$. params.randRowPartitions A (params.nfold $\times 1$) cell array. For n-fold CV procedure, p samples are partitioned into params.nfold groups equally. params.randRowPartitions $\{i\}$ records the sample indexes in the i th group ($i=1, \ldots$, params.nfold).
params.cv_scores A matrix where params.cv_scores (i, j) is the cv score for the i th group of parameters when identify the j th md-module.
params.paramsidx_used
A (nfactor $\times 1$) vector. params.paramsidx_used(i) is the index of selected parameters for identifying the i th md-module.
sMBPLS_algorithm sMBPLS algorithm.

Description

This implements the sMBPLS algorithm.

Usage

[success, w, q, b, a, T, U, t, u, XX, YY, TerminalObj, iter] $=$ sMBPLS_algorithm(X, Y, XInd, YInd, param);

Arguments

X, Y, XInd, YInd Defined the same as those in function 'sMBPLS_comodule'.
param A structure variable including six components:
param.maxiter, param.tol
Same as those in function 'sMBPLS_comodule'. param.thrXc, param.thrYc

Two positive integers which are two thresholds for selecting features of X and Y in the identified md-modules. param.thrXr, param.thrYr
param.thrXr = param.thrYr. A positive integer which is a threshold for selecting samples in the identified md-modules.

Output

success An indicator to show if this algorithm runs successfully or not (1 for success, 0 for failure).
$\mathrm{w}, \mathrm{q} \quad$ Weight vectors for X, Y.
b , a Super weight vectors for X, Y.
$\mathrm{T} \quad \mathrm{A}(p \times N)$ matrix, $T(:, i)$ is the score vector for $X_{i}(i=1, \ldots, N)$.
$\mathrm{U} \quad \mathrm{A}(p \times M)$ matrix, $U(\because, i)$ is the score vector for $Y_{i}(i=1, \ldots, M)$. Generally, $M=1$.
t , u Super score vectors for X, Y.
XX, YY The new matrices after removing the signals of current md-modules from X and Y.
iter The number of iterations to indicate when the algorithm stops.
TerminalObj A iter $\times(2+N+M))$ matrix in which each row records the values of all the terms in the objective function and the sum of them in each iteration.

Description

This function is used to incorporate all the parameters into a structure variable 'newparams'.

Usage

newparams = sMBPLS_params(params);

Arguments

$\begin{aligned} & \text { params } \\ & \text { params.maxiter, params.tol, params.nfold, params.nfactor } \\ & \text { They are the same as those in the function 'sMBPLS_comodule'. }\end{aligned}$
params.thrXYr_list $\begin{aligned} & \text { This is a column vector recording the thresholds for selection samples. } \\ & \text { params.thrXc_list }\end{aligned} \begin{aligned} & \text { A }(1 \times N) \text { cell array. params.thrXc_list }\{i\} \text { is a column vector, which } \\ & \text { includes several thresholds for selection features in data matrix } X_{i} \\ & (i=1, \ldots, N) .\end{aligned}$

Output

newparams A structure variable which is the same as the input argument 'params' in 'sMBPLS_comodule'.

sMBPLS_select_param

Select a group of proper parameters used in sMBPLS algorithm.

Description

Using a cross-validation (CV) procedure to select a group of proper parameters.

Usage

[param_idx, cv_scores] = sMBPLS_select_param(X, Y, XInd, YInd, params);

Arguments

X, Y, XInd, YInd Defined as those in function 'sMBPLS_comodule'. params

Output

param_idx The index of selected optimal parameters in params.param.
cv_scores A column vector recording the CV scores for all groups of parameters.
sMBPLS_getCVscore Calculate the CV score for one group of parameters.

Description

By using a n-fold cross-validation (CV) procedure for one group of parameters, it will obtain the corresponding CV score to assess this group of parameters. The smaller the better.

Usage

cv_score $=$ sMBPLS_getCVscore(X, Y, XInd, YInd, param, randRowPartitions);

Arguments

X, Y, XInd, YInd, param Defined the same as those in function ' $s M B P L S _$algorithm'. randRowPartitions Defined the same as 'params.randRowPartitions' in the output of function 'sMBPLS_comodule'.

Output

cv_score A score for this group of parameters 'param' in the input arguments.
variable_sparse Make the vector sparse.

Description

Make the input vector sparse based on the input threshold.

Usage

[sw, err] = variable_sparse (w, thrd, msg);

Arguments

w A vector.
thrd A threshold for the degree of sparsity of w.
$\mathrm{msg} \quad$ A string representing the name of variable w.
Output
sw The sparse vector.
err An indicator (1 indicates it is done successfully, and 0 for not).
newMatrix \quad Obtain a new matrix.

Description

Remove the signals of the current identified md-module from the current data matrix X, and obtain a new matrix $X X$.

$$
\begin{aligned}
& \text { Usage } \\
& \text { XX }=\text { newMatrix }(\mathrm{X}, \mathrm{t}, \text { thrd, } \mathrm{msg} 1, \mathrm{msg} 2) \text {; }
\end{aligned}
$$

Arguments

X	A matrix.
t	The latent variable for data X.
thrd	A threshold.
msg 1	A string representing the name of variable t.
msg 2	A string representing the name of variable X.
Output	
XX	A new matrix removed signals from matrix X.

3.2 Output figures
sMBPLS_plot_XY

Provide the heatmaps for the original or reordered input matrices.

Description

Draw the heatmaps of the original input matrices (X, Y) by ignoring the input argument 'vectorForRank' or the heatmaps of reordered input matrices ordered based on the variable
'vectorForRank' where the signals of the identified md-module will be located in the four corners of this heatmap.

Usage

sMBPLS_plot_XY(X, Y, XInd, YInd, fig, figure_title, colormap_type, vectorForRank);

Arguments

X, Y, XInd, YInd Defined as those in the function 'sMBPLS_comodule'.
fig, figure_title, colormap_type
Defined as those in the function ' $j N M F$ plot_X' of jNMF .
vectorForRank A structure variable including
vectorForRank.t The scores used for ordering samples. It is one column of matrix $s T$ in the output of function 'sMBPLS_comodule'. vectorForRank.w, vectorForRank.q

The weight vectors for X, Y related to a specific md-module, respectively. They are respectively one column of matrix W, Q in the output of function 'sMBPLS_comodule'.

Output

The heatmaps for the original or reordered input data matrices.

$$
\begin{array}{ll}
\text { sMBPLS_plot_results } & \begin{array}{l}
\text { Demonstrate the heatmaps of a specific md-module and the } \\
\text { scatterplots for the correlation between the selected features. }
\end{array}
\end{array}
$$

Description

Show the heatmaps of a selected md-module (circled in yellow lines), and the scatterplots for the correlations between the selected features.

Usage

sMBPLS_plot_results(X, Y, XInd, YInd, FeatureType, fig, figure_title, colormap_type, vectorForRank);

Arguments

X, Y, XInd, YInd, fig, figure_title, colormap_type
Defined the same as those input arguments in 'sMBPLS_plot_XY'.
vectorForRank A structure variable including six components. Except for the three ones in the input argument vectorForRank of 'sMBPLS_plot_XY', there are also
vectorForRank.T $\mathrm{A}(p \times N)$ matrix. $T(:, i)$ is the score vector for $X_{i}(i=1, \ldots, N)$. vectorForRank.U A $(p \times M)$ matrix. $U(:, i)$ is the score vector for $Y_{i}(i=1, \ldots, M)$. vectorForRank.comodule A $(1 \times(N+M+1))$ cell array. vectorForRank.comodule $\{i\}$ records the i th feature indexes of a selected md-module. The first column is for selected samples.
FeatureType A $(1 \times(N+M))$ cell array. FeatureType $\{\mathrm{i}\}$ records the name of i th type of features (e.g., FeatureType $=\{$ 'microRNA expression', 'CNV', 'DNA Methylation', ‘Gene expression'\}.

Output

The heatmaps for certain selected md-module to demonstrate the patterns of this md-module as shown in Figure 4

The scatterplots for the correlation between the selected features as shown in Figure 5
sMBPLS_plot_distribution Demonstrate the module size distributions.

Description

This function provides histograms for the size distributions of all the components in the identified md-modules.

Usage

sMBPLS_plot_distribution(nSample, Ind, Comodule, FeatureType, fig, figure_title);

Arguments

Ind Ind $=[$ XInd; YInd $]$. XInd, YInd are the same as those in function 'sMBPLS_comodule'.
Comodule It is the same as that in the output of function 'sMBPLS_comodule'. nSample, FeatureType, fig, figure_title

Similar with those in function ‘jNMF plot_distribution’.

Output

Histograms for the size distributions of all the features in the identified md-modules.

3.3 Output text files

Index2LabelForModuleContent
Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

OutputModule2TXT
Output the feature indexes of the identified md-modules.

Description

This function is the same as that described in jNMF.

4 SNPLS

SNPLS (Sparse Network-regularized PLS) is designed for one input matrix ($X \in \mathbb{R}^{p \times n}$) and one response matrix $\left(Y \in \mathbb{R}^{p \times m}\right)$. It introduces network-regularized constraints, expressed as adjacency matrices $A \in \mathbb{R}^{n \times n}$ of a given interaction network G_{1} for the features in X and/or $B \in \mathbb{R}^{m \times m}$ of another interaction network G_{2} for Y. This problem is defined as,

$$
\begin{gathered}
\max _{g, d} \operatorname{cov}(X g, Y d)-\lambda_{1} g^{T} L_{X} g-\lambda_{2} d^{T} L_{Y} d-\lambda_{3}\|g\|_{1}-\lambda_{4}\|d\|_{1} \\
\text { s.t. } \quad g^{T} g=1, d^{T} d=1 .
\end{gathered}
$$

where $u=X g, v=Y d, L_{X}, L_{Y}$ are the symmetric Laplacian matrices of network G_{1}, G_{2}, repsectively.

4.1 Algorithm

Run_SNPLS The main function for SNPLS.

Description

This is the main function for SNPLS, which integrates all the related functions to achieve it.

Usage

Run_SNPLS(Input);

Arguments

Input A structure variable (Section 5).

Output

It saves all the results in the directory './MIA/SNPLS/SNPLS_Results/', including SNPLS_Results.mat, SNPLS_RunRecords.txt, SNPLS_Results.txt, several folders and figures, which record the similar contents with those in function 'Run_jNMF' of jNMF as shown in Figure 2, Figure 3 and Figure 4

```
SNPLS_comodule
Obtain the co-modules (md-modules).
```


Description

This function returns all the co-module (md-modules) by running SNPLS for multiple times.

Usage

[nfactor, G, D, U, V, XX, YY, Comodule, params] = SNPLS_comodule(X, Y, A, B, FeatureType, params);

Arguments

$\mathrm{X} \quad$ The input matrix of size $(p \times n)$.
Y The response matrix of size $(p \times m)$.
A The adjacency matrix for the interactions between the features in X, where $A=\left(a_{i j}\right), a_{i j}=1$ if features i and j are linked; $a_{i j}=0$, otherwise.
B The adjacency matrix defined similar with A for the features in Y.
FeatureType A (1×2) cell array. FeatureType $\{i\}$ records the name of i th type of features (e.g., FeatureType $=\{$ 'microRNA expression', 'Gene expression' $\}$.
params A structure variable including the components below: params.nfactor, params.nfold, params.maxiter, params.tol

Defined the same as those in the function 'sMBPLS_comodule'. params.param A $(l \times 1)$ cell array recording all the combinations of parameters to be selected. params.parami contains one group of parameters used in the algorithm, including $t h r X c$ and $t h r Y c$ (controlling the number of selected features of X and Y in the identified md-modules) thrXNet and thrYNet (parameters for the network-regularized constraints in the objective function), maxiter (maxiter $=$ params.maxiter), tol $($ tol $=$ params.tol $)$.
params.thrd_module A positive vector of size 1×3 which stores the thresholds for selecting samples and features in X and Y.

Output

nfactor, XX, YY, Comodule
Similar with those in the function 'sMBPLS_comodule' with $N=M=1$.
G A $(n \times$ nfactor $)$ matrix, $G(:, i)$ is the weight vector for X in the i th md-module.
D A ($m \times$ nfactor $)$ matrix, $D(:, i)$ is the weight vector for Y in the i th md-module.
$\mathrm{U} \quad \mathrm{A}(p \times n f a c t o r))$ matrix, $U(:, i)$ is the super score for X in the i th md-module ($i=1, \ldots$, nfactor). md-module ($i=1, \ldots$, nfactor).
params Compared to 'params' as input, there are new components including params.iterNumList, params.records, params.randRowPartitions, params.cv_scores, params.paramsidx_used defined the same as the output argument in the function 'sMBPLS_comodule'.

SNPLS_algorithm SNPLS algorithm.

Description

This implements the SNPLS algorithm.

Usage

[success, g, d, u, v, XX, YY, TerminalObj, iter] = SNPLS_algorithm(X, Y, LX, LY, param);

Arguments

$\mathrm{X}, \mathrm{Y} \quad$ The same as those in function 'SNPLS_comodule'.
LX, LY Laplacian matrices of size $(n \times n)$ and $(m \times m)$ about the interaction network for the features in data X and Y, respectively.
param A structure variable including
params.tol, params.maxiter
Defined the same as those in the function 'SNPLS_comodule'. param.thrXc, param.thrYc

Two non-negative numbers which are respectively related to the parameters λ_{3}, λ_{4} in the objective function.
param.thrXNet, param.thrYNet
Two non-negative numbers. param.thrXNet is the parameter λ_{1} in the objective function used in the network-regularized constraint about X. param.thrYNet is similar with param.thrXNet used in the netowrk about Y if available.
If param. $\mathrm{thrXNet}=$ param.thrYNet $=0$, this algorithm reduces to sMBPLS for pairwise case. If param.thrXc = param.thrYc = param. $\mathrm{th} r \mathrm{XNet}=$ param. $\mathrm{thr} Y \mathrm{Net}=0$, this algorithm reduces to the standard PLS.

Output

success, TerminalObj, iter, XX, YY
They are the same as those in the function 'sMBPLS_algorithm'.
g, d Weight vectors for X and Y.
u, v Score vectors for X and Y.

SNPLS_params Integrate all the parameters into an unified framework.

Description

This function is used to incorporate all the parameters into a structure variable 'newparams'.

Usage

newparams = SNPLS_params(params);

Arguments

params	A structure variable including
params.tol, params.maxiter, params.nfold, params.nfactor, params.thrd_module	
	Defined the same as those in the function 'SNPLS_comodule'.
params.thrXNet_list	This is a column vector recording the parameters for the network

constraint about X in the objective function.
params.thrYNet_list This is a column vector recording the parameters for the network constraint about Y in the objective function.
params.thrXc_list A column vector, which includes several thresholds for selecting features in data matrix X.
params.thrYc_list A column vector, which includes several thresholds for selecting features in data matrix Y.

Output

newparams
A structure variable defined the same as the input argument 'params' in the function 'SNPLS_comodule'.

SNPLS_select_param Select a group of proper parameters used in SNPLS.

Description

Using a cross-validation (CV) procedure to select a group of proper parameters.

Usage

[param_idx, cv_scores] = SNPLS_select_param(X, Y, LX, LY, params);

Arguments

X, Y, LX, LY Defined the same as those in the function 'SNPLS_algorithm'. params A structure variable including params.param, params.randRowPartitions, which are both the same as the output argument 'params' in the function 'SNPLS_comodule'.

Output

param_idx The index of the selected optimal parameters in params.param. cv_scores A column vector recording the CV scores for all groups of parameters.

$$
\text { SNPLS_getCVscore } \quad \text { Calculate the CV score for a group of parameters. }
$$

Description

By using a n-fold cross-validation (CV) procedure for one group of parameters, it will obtain the related CV score to assess these parameters. The smaller the better.

Usage

cv_score $=$ SNPLS_getCVscore(X, Y, LX, LY, param, randRowPartitions);

Arguments

X, Y, LX, LY, param are the same with those in the function 'SNPLS_algorithm'.
randRowPartitions is the same with 'params.randRowPartitions' in the output of function 'SNPLS_comodule'.

Output

cv_score The score for this group of parameters 'param' in the input arguments.

PLS The standard PLS algorithm.

Description

This function is used to produce the initial vectors for SNPLS.

Usage

[success, g, d, u, v] = PLS (X, Y);

Arguments

X, Y Two input matrices for the PLS algorithm.

Output

success An indicator to indicate whether PLS performs successfully or not (1 for success and 0 for failure).
$\mathrm{g}, \mathrm{d} \quad$ The weight vectors for input data X and Y.
u, v The score vectors for input data X and Y.
thresholding \quad Make the input vector sparse.

Description

Make the input vector sparse based on the input thresholds.

Usage

sw $=$ thresholding $(\mathrm{w}$, thrd, msg$)$;

Arguments

w	A vector.
thrd	A threshold for the degree of sparsity of w.
msg	A string for the name of variable w.
Output	
sw	The sparse vector.

4.2 Output figures

SNPLS_plot_XY
Provide the heatmaps for the original or reordered input matrices.

Description

It is a similar function as 'sMBPLS_plot_XY' described in sMBPLS.

Usage

SNPLS_plot_XY(X, Y, fig, figure_title, colormap_type, vectorForRank);

Arguments

X, Y The same as those in the function 'SNPLS_comodule'.
fig, figure title, colormap_type
Defined the same as those in the function ' $j N M F$ plot_X'of jNMF .
vectorForRank A structure variable including
vectorForRank.u The scores used for ordering samples. It is one column of matrix U
in the output of function 'SNPLS_comodule'.
vectorForRank.g, vectorForRank.d
The weight vectors for X and Y related to one identified md-module, respectively. They are respectively one column of matrix G, D in the outputs of function 'SNPLS_comodule'.

Output

The heatmaps for the original or reordered input data matrices.

Demonstrate the heatmaps of certain identified md-module and the scatterplots for the correlation between the selected features.

Description

It is a similar function with 'sMBPLS_plot_results' described in sMBPLS.

Usage

SNPLS_plot_results(X, Y, FeatureType, fig, figure_title, colormap_type, vectorForRank);

Arguments

X, Y, fig, figure_title, colormap_type
The same as those of function 'SNPLS_plot_XY'.
vectorForRank A structure variable containing vectorForRank.g, vectorForRank.d, vectorForRank.u

Defined the same as those in the function 'SNPLS_plot_XY'. vectorForRank.comodule A (1×3) cell. It has the similar meaning with that in the function 'sMBPLS_plot_results'.
vectorForRank.v The score vector for data Y. It is one column of matrix V in the output of function 'SNPLS_comodule'.
FeatureType Similar definition with that in the function 'sMBPLS_plot_results' with $N=M=1$.

Output

The heatmaps for certain selected md-module to demonstrate the patterns of this md-module. The scatterplots for the correlation between the selected features.

SNPLS_plot_distribution Demonstrate the module size distributions.

Description

This function provides histograms for the size distributions of all the components in the identified md-modules, which has the similar input arguments and output results.

Usage

SNPLS_plot_distribution(nSample, Ind, Comodule, FeatureType, fig, figure_title);

4.3 Output text files

Index2LabelForModuleContent
Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

Description

This function is the same as that described in jNMF.

5 Input data

To facilitate the usage, MIA package implements the four methods using the same structure variable to describe the input data. This variable, named Input, includes the following components:

Input.data: A matrix storing all the multi-dimensional data sequentially (e.g., Input.data $=$ $\left[X_{1}, \ldots, X_{N}\right]$). Each row corresponds to the genomics features of a specific sample. Each type of genomic data is assigned its own set of columns.

Input.XBlockInd: A matrix of size $N \times 2$. The two elements in i th row give the start and end column indexes in Input.data for the i th X matrix $(i=1, \ldots, N)$.

Input.YBlockInd: A matrix storing the response matrix Y for both sMBPLS and SNPLS. Its format is similar to Input.XBlockInd.

Input.netAdj: The symmetric adjacency matrix of a given network used for SNMNMF and SNPLS, where the features have the same order as in Input.data. This network combines the interactions between and within the variables in multiple types of variables. The element of this matrix equals to 1 for linked features in the network, and 0 otherwise.

Input.SampleLabel: A vector recording the labels of samples.
Input.FeatureLabel: A vector recording the feature names in Input.data. The i th label corresponds to the i th feature in Input.data.

Input.FeatureType: A vector recording the feature types in Input.data. Here we give an example: Input.FeatureType $=\{$ 'Gene expression', 'microRNA expression', 'DNA methylation' $\}$.

Input.params: A structure variable, storing all the parameters used in MIA.
For these four methods, there are three common parameters, including

- Input.params.NCluster: A pre-defined number of md-modules. For example, we may set Input.params.NCluster $=20$.
- Input.params.maxiter: The maximal iteration times in each algorithm. For example, we may set Input.params.maxiter $=100$.
- Input.params.tol: The precision for convergence of each algorithm. For example, we may set Input.params.tol $=10^{-6}$.

For jNMF, there are two specific parameters:

- Input.params.nloop: The number of repeating times to run this algorithm. To obtain a robust and optimal solution, this algorithm is run for multiple times repeatedly, and the solution with the minimal value of objective function is accepted. For example, we may set Input.params.nloop $=50$.
- Input.params.thrd_module: A non-negative vector of size $1 \times(N+1)$ to select features in md-modules. Input.params.thrd_module $(i+1)$ is the threshold for selecting the i th type of features in Input.data $(i=1, \ldots, N)$. The first one is for selecting samples. The larger they are, the smaller number of features are selected. Users can set it based on the size of md-modules they prefer to identify. For example, we may Input.params.thrd_module $=$ ones $(1, N+1)$.

For SNMNMF, except for Input.params.nloop and Input.params.thrd_module, there are also:

- Input.params.thrNet11, Input.params.thrNet12, Input.params.thrNet22: The three non-negative numbers are set for the parameters respectively related to the network constraints about network A_{11}, A_{12}, A_{22} in the objective function, where A_{11}, A_{22} are respectively the adjacency matrices for the interaction networks within the features in data matrix $X_{1}, X_{2} ; A_{12}$ is for the interaction network between the two types of features. User can choose which networks they prefer to use in the framework by setting the corresponding parameters. For example, if Input.params.thrNetll $=0$, the network A_{11} will not be used.
- Input.params.thrXr, Input.params.thrXc: The two non-negative numbers are set for the row related (or W), and column related $\left(H_{i}\right)$ terms respectively in the objective function. It controls the degree of sparsity of matrix W, H. For example, we may set Input.params.thrXr = 10, Input.params.thrXc $=10$.

For sMBPLS, there are:

- Input.params.nfold: A positive number used for n-fold cross-validation (CV) procedure. Generally, we set Input.params.nfold $=5$ or $=10$. This method applies CV procedure to select a proper group of parameters from all the combinations of these parameter lists described below.
- Input.params.thrXYr_list: A column vector with positive integers. They are candidates for thresholds in order to select samples in md-modules. For example, we may set Input.params.thrXYr_list $=[20 ; 30]$.
- Input.params.thrXc_list, Input.params.thrYc_list: Two row vectors of size $1 \times N, 1 \times$ M with positive integers to control the degree of sparsity for the weight variables of input data X, Y, respectively. For example, we may set Input.params.thrXc_list $=$ repmat $(\{[20 ; 30]\}, 1, N)$, Input.params.thrYc_list $=\operatorname{repmat}(\{[20 ; 30]\}, 1, M)$, where $N=$ size(Input.XBlockInd,1), $M=$ size(Input.YBlockInd,1).

For SNPLS, there are:

- Input.params.nfold: It is the same as that in sMBPLS.
- Input.params.thrXc_list, Input.params.thrYc_list: They have the same meaning as those in sMBPLS for the situation of $N=1, M=1$. Thus, they are defined as column vectors. For example, we may set Input.params.thrXc_list $=[0.01 ; 0.03 ; 0.05]$, Input.params.thrYc_list $=[0.1 ; 0.3 ; 0.5]$.
- Input.params.thrXNet_list, Input.params.thrYNet_list: The two column vectors with non-negative values. They have the similar function with Input.params.thrNetll in SNMNMF. Input.params.thrXNet_list, Input.params.thrYNet_list are respectively for the networks within the features in input data X, and response data Y. For example, we may set Input.params.thrXNet_list $=[1 ; 5]$; Input.params.thrYNet_list $=[1 ; 5]$.
- Input.params.thrd_module: It is a non-negative matrix of size 3×2. The first column Input.params.thrd_module $(i, 1)$ is the threshold for selecting the i th feature in Input.data $(i=1,2,3)$. And the second column Input.params.thrd_module($i, 2$) is a percentage in case of no features selected using the threshold. The first row is for selecting samples. The larger the thresholds are, the smaller number of features are selected. Users can set it based on the size of md-modules they prefer to identify. For example, we may set Input.params.thrd_module $=[1,0.5 ; 1,0.5 ; 1,0.5]$.

In addition, for the components that are not used in certain methods (e.g., Input.YBlockInd in jNMF and SNMNMF and Input.netAdj in jNMF and sMBPLS), users can set them null or just ignore them.

With this data structure, MIA is able to partition Input.data into corresponding data matrices as input for each method automatically.

Next, we provide an example for constructing the input data used in SNMNMF. Suppose that one wants to identify 50 microRNA-gene co-modules by integrate gene expression profiles $\left(X_{1} \in \mathbb{R}^{385 \times 12456}\right)$ and micro-RNA expression profiles ($X_{2} \in \mathbb{R}^{385 \times 559}$) across the same set of samples, as well as the gene interaction network G_{1}, gene-microRNA interaction network G_{2}. The network G_{1} can be expressed by the adjacency matrix $A_{11}=\left(a_{i j}\right)_{12456 \times 12456}$, where $a_{i j}=1$ if gene i and gene j is linked in the network G_{1}. Similarly, G_{2} is expressed by the
adjacency matrix $A_{12} \in \mathbb{R}^{12456 \times 559}$ ．If the microRNA interaction network is not available，the corresponding adjacency matrix A_{22} is defined as $A_{22}=\operatorname{zeros}(559,559)$ ．

Then，we could define the input data Input as below：

```
Input.data \(=\left[X_{1}, X_{2}\right]\);
Input.XBlockInd \(=[1,12456 ; 12457,13015]\);
Input.YBlockInd \(=[\quad]\);
Input.netAdj \(=\left[A_{11}, A_{12} ; A_{12}{ }^{T}, A_{22}\right]\);
Input.SampleLabel \(=\left\{{ }^{‘}\right.\) TCGA-24-1105-01A';...;'TCGA-13-0793-01A' \(\} ;\)
Input.FeatureLabel \(=\{\) 'SFRS8';...;'SCN3A';'hsa-mir-488';...;'hsa-mir-874' \(\} ;\)
Input.FeatureType \(=\{\) 'Gene','miRNA' \(\}\);
Input.params.NCluster \(=50\);
Input.params.maxiter \(=100\);
Input.params.tol \(=10^{-6}\);
Input.params.nloop \(=5\);
Input.params.thrd_module \(=[1,0.5 ; 1,0.5 ; 1,0.5]\);
Input.params.thrNet11 \(=10^{-4}\); Input.params.thrNet12 \(=0.01\); Input.params.thrNet \(22=0\);
Input.params.thrXr = 10; Input.params.thrXc \(=10\);
```

InputDataForSNMNMF.mat (MAT File)

\＃Name			
图 Input	1 struct＞	困 Input．params	＜1x1 struct＞
\checkmark		Field	Value
固 Input $<1 \times 1$ s		⿴囗十thrNe	$1.0000 \mathrm{e}-04$
Field	Value	田thrNet12	0.0100
	＜385x13015 double＞	田thrNet22	0
田XBlockInd	［1，12456；12457，13015］	田thrXr	10
\＃NCluster	50	田thrXc	10
田netAdj	＜13015x13015 double＞	\＃thrd＿module	［1，7，7］
（3）SampleLabel	＜385x1 cell＞	\boxplus NCluster	50
固 params	＜1x1 struct＞	\＃nloop	5
［［］FeatureLabel	$<13015 \times 1$ cell＞		100
［6）FeatureType	$<1 \times 2$ cell＞	田tol	$1.0000 \mathrm{e}-06$

Figure 1：Illustration of an example of the input data for $S N M N M F$ ．

Figure 2: An overview of the output results for $S N M N M F$. The details about each part are shown in Figure 3 and Figure 4.

Figure 3: The details about the output files shown in Figure 2 (a) In each folder, there are a number of text files, each of which records one type of components in one identified co-modules. (c) A MATLAB data file storing the computation results, including the factorized matrices $W, H 1, H 2$, the 50 identified co-modules, and the parameters used in this method. (d) The first text file records the feature indexes of all the identified md-modules, in which the first three numbers are the number of samples, genes, microRNAs in one identified md-modules, and the next three columns show the indexes of selected samples, genes and microRNA, respectively. Each list are included in the square brackets. The second text file records some information during the iterations. The first line shows the parameters used in SNMNMF. The rest lines show the changes of objective function during multiple-round running. It just records the results better than the previous round. bestObj stores values of the terms in the objective function in the 'iloop'th round, and sum_Obj is the sum of these terms.

Figure 4: An example for the output figures in Figure 2b.

Identified comodule 1

Figure 5: An example for the output figures for sMBPLS.

6 Guide for the MIA users without a MATLAB license

Guide:

1. Operating System requirements: Windows 64-bit.
2. Download and install the Windows 64-bit version of the MATLAB Runtime for R2015b from the MathWorks Web site by navigating to http://www.mathworks.com/products/compiler/mcr/index.html.
3. Prepare the input data and store them in the path "./MIA/InputData/". In this folder, we provide the input data for each method as examples. For each method, there are two Excel files (one is for input data and another one is for input parameters), each of which includes several sheets. Users need to arrange their data in the same way as those example Excel files in this folder we provided. Note that, each sheet is renamed as the corresponding variable name as described in our manuscript.
4. Open the Command Prompt (cmd.exe). Set the current path as where the MIA package is located, e.g., "D:/MIA".
5. Produce MATLAB data files (*.mat) by running PreInputData.exe. Type the command as below:

D: \backslash MIA $>$ PreInputData.exe ./InputData/DataForjNMF.xlsx ./InputData/ParametersForjNMF.xlsx ./InputData/InputDataForjNMF.mat jNMF
or
D: \MIA>PreInputData.exe ./InputData/DataForSNMNMF.xlsx ./InputData/ParametersForSNMNMF.xlsx ./InputData/InputDataForSNMNMF.mat SNMNMF or

D: \MIA>PreInputData.exe ./InputData/DataForsMBPLS.xlsx ./InputData/ParametersForsMBPLS.xlsx ./InputData/InputDataForsMBPLS.mat sMBPLS
or
D: \MIA > PreInputData.exe ./InputData/DataForSNPLS.xlsx ./InputData/ParametersForSNPLS.xlsx ./InputData/InputDataForSNPLS.mat SNPLS

The first two parameters are the file names storing input data and parameters; the next parameter is the output file name. The last one is the selected method. The produced new data files (e.g., "InputDataForjNMF.mat") are saved in the path "./MIA/InputData/".
6. Run MIA.exe. Type the command as below:

D: \backslash MIA > MIA.exe ./InputData/InputDataForjNMF.mat jNMF
or
D: \backslash MIA $>$ MIA.exe ./InputData/InputDataForSNMNMF.mat SNMNMF
or
D: \backslash MIA $>$ MIA.exe ./InputData/InputDataForsMBPLS.mat sMBPLS
or
D: \backslash MIA $>$ MIA.exe ./InputData/InputDataForSNPLS.mat SNPLS
The first one is about the input data file and the second one is about the selected method. For each method, the results are saved their own directory. For example, the results of running jNMF are saved in "./MIA/jNMF/jNMF_Results/".

[^0]: jNMF_comodule
 Obtain the md-modules.

