
Package ‘MIA’

Version 1.0
Date 2016-01-14
Title Matrix Integration Analysis
Author Jinyu Chen<chjy@amss.ac.cn>, Shihua Zhang<zsh@amss.ac.cn>
Depends MATLAB (≥ R2013a)
Description Detecting multi-dimensitional modules (md-modules) in diverse genomics data as

well as molecular network data using the methods in MIA package.
URL http://page.amss.ac.cn/shihua.zhang/software.html

1

Here, we provide a guide for MIA package. It describes all theMATLAB functions in MIA in
detail. For each method, these MATLAB functions mainly perform the tasks including realizing
a specific algorithm, drawing figures and outputting text files about the identified md-modules.

2

1 jNMF

jNMF (joint Non-negativeMatrix Factorization) enables users to simultaneously factor two or
more types of genomic data sharing the same set of samples. Here, we adopt multiplicative
update algorithm to solve the following problem:

minW,Hi

N∑

i=1

‖Xi −WHi‖
2
F , s.t.W ≥ 0,Hi ≥ 0, i = 1, ..., N.

1.1 Algorithm

Run jNMF The main function for jNMF.

Description

This is the main function for jNMF, which integrates all the related functions to achieve it.

Usage

Run jNMF(Input);

Arguments

Input A structure variable. The details about its construction can
be found in Section 5.

Output

It saves all the results in the directory ‘./MIA/jNMF/jNMF Results/’.
jNMF Results.mat The essential computed variables.
jNMF RunRecords.txt The updated values of the objective function in each round

of running.
jNMF Results.txt The numbers and indexes of features separated in comma.

Each row records the information for each identified md-module.
Several folders Each folder contains the lists of all the identified md-modules

for one type of features as shown in Figure 2a and Figure 3a.
Several figures As shown in Figure 2b and Figure 4.

jNMF PrepData Preprocess the input data.

Description

This function is used to preprocess the input data to ensure its non-negativity.

Usage

[X, isdouble] = jNMF PrepData(OX);

Arguments

OX A matrix.

Output

X A non-negative matrix, the transformation of dataOX.
isdouble A binary variable (1 indicates changes have been made; 0 is for no

change, that is,X= OX).

jNMF comodule Obtain the md-modules.

3

Description

This function outputs the optimal factorization results through running jNMF for multiple
times, then identify md-modules based on the factorized matricesW , Hi (i = 1, 2, ...).

Usage

[W, H, Comodule, params] = jNMFcomodule(Input, params);

Arguments

Input A structure variable including two components:
Input.data A non-negative matrix combingN data blocks sequentially to be

factorized, such asInput.data= [X1,X2, ...,XN].
Input.XBlockInd A matrix of sizeN × 2. The two elements of theith row give the

start and end column indexes inInput.datafor data matrixXi

(i = 1, ..., N).
params A structure variable including six components:

params.isdouble A vector of sizeN × 1. Theith element indicates whether theith
data matrix is transformed to ensure its non-negativity (0 for no
change, and 1 for change).

params.K The number of md-modules users prefer to identify.
params.nloop The repeating times of jNMF. To ensure the robust of this method,

this function repeats the algorithm for ‘params.nloop’ times.
params.maxiter The maximal number of iterations for this algorithm.
params.tol The precision for convergence of algorithm.
params.thrdmodule A positive vector of size1×(N+1). Thresholds for selecting features

in N data blocks. The first one is to select samples.

Output

W, H Factorization results such thatInput.data≈ WH. W is the basis matrix
of sizem×K andH is the weight matrix of sizeK × n, where
K = params.K.

Comodule Identified md-modules recorded in a(K×(N+1)) cell array.Comodule{i,j}
records selected feature indexes of thejth type of variables in theith
identified md-module. The first column is for selected samples.

params Compared to‘params’ as input, there are something new added in it,
including

params.records A (nloop×1) cell array.params.records{i} is a (iter× (N + 1))
vector, where each row records the values of all the terms in the
objective function and the sum of them in each iteration.

params.iterNumList A (nloop×1) vector, where each element is the number of iterations
for each round of running.

jNMF algorithm jNMF algorithm.

Description

This is jNMF algorithm.

Usage

[W, H, TerminalObj, iter] = jNMFalgorithm(X, XInd, params);

Arguments

X A non-negative input matrix of sizem× n combingN data matrices
sequentially to be factorized (e.g.,X = [X1,X2, ...,XN]).

XInd A matrix of sizeN ×2. The two elements of theith row give the start

4

and end column indexes inX for data matrixXi (i = 1, ..., N).
params A structure variable includingparams.K, params.maxiter, params.tol

defined the same as that in the function ‘jNMF comodule’.

Output

W, H Factorization results like those in function ‘jNMF comodule’.
iter The number of iterations when the algorithm stops.
TerminalObj A (iter × (N + 1)) matrix in which each row records the values of

all the terms in the objective function and the sum of them in each
iteration.

jNMF module Identify md-modules from factorized matrices.

Description

Based on the factorized matrixW orHi, identify module members for each type of features.

Usage

module = jNMFmodule(H, t, isdouble);

Arguments

H A (K ×m) non-negative matrix used for module identification.
t A threshold value for selecting features.
isdouble A binary variable (1 is for the number of features inmatrixH is double

than that of the original ones, and 0 is for no change).

Output

module A (K × 1) cell array. modulei,1 contains the feature indexes of the
ith module.

1.2 Output figures

jNMF plot X Provide the heatmaps of the original input matrices.

Description

Draw the heatmaps of the original input matrices (X1,X2, ...,XN).

Usage

jNMF plot X(X, XInd, fig, figure title, colormaptype);

Arguments

X The input matrix combingN data matrices to be factorized (e.g.,
X = [X1,X2, ...,XN]).

XInd A matrix of sizeN ×2. The two elements of theith row give the start
and end column indexes inX for data matrixXi (i = 1, ..., N).

fig A positive integer for figure index.
figure title A string for the title of figure.
colormaptype A string for the colormap of heatmaps. Options includes‘blue-yellow’,

‘green-red’, ‘yellow’, ‘blue-white-red’, ‘default’.

Output

The heatmaps for all the input data matrices as shown in Figure 4.

jNMF plot results Show the heatmaps of certain identified md-modules.

5

Description

Show the heatmaps of a selected identified md-module (circled in yellow lines).

Usage

jNMF plot results(X, XInd, FeatureType, fig, figuretitle, colormaptype, vectorForRank);

Arguments

X, XInd, fig, figuretitle, colormaptype
They have the same definitions with those in functionjNMF plot X.

FeatureType A (1×N) cell array.FeatureType{i} records the name ofith type of
features (e.g.,FeatureType ={‘Gene expression’,‘microRNA expression’,‘CNV’}).

vectorForRank A structure variable containing four components:
vectorForRank.w, vectorForRank.h

Two vectors for the selected md-module. For example, if one wants to
demonstrate theith md-module,vectorForRank.wis theith column of
basis matrixW andvectorForRank.his theith row of weight matrix
H.

vectorForRank.comodule
A (1×(N + 1)) cell array.vectorForRank.comodule{i} records the
ith feature indexes of the selected md-module.

vectorForRank.hInd Similar with the input variable‘XInd’ to ‘X’ , it records the indexes
for ‘vectorForRank.h’.

Output

The heatmaps for a selected md-module to demonstrate its patterns as shown in Figure 4.

jNMF plot correlation Demonstrate the correlations between the original data
and reconstructed data.

Description

Demonstrate the correlations between the original dataXi and reconstructed datanewXi =
WHi using boxplots.

Usage

corrMat = jNMF plot correlation(X, newX, XInd, newXInd, fig, figuretitle);

Arguments

X, XInd, fig, figuretitle
They have the same definitions with those in function ‘jNMF plot X’.

newX The reconstructed matrix combingN data matrices sequentially,
that is,newX= [WH1,WH2, ...,WHN].

newXInd Similar with the input variable‘XInd’ to ‘X’ , it records the indexes
for matrix newX.

Output

corrMat A matrix of sizem×N , wherem is the number of samples andN is
the input data matrices, respectively.corrMat(i,j) records the correlation
between theith rows of the original data (Xj) and reconstructed data
(WHj).

Boxplots for input data matricesX1,X2, ...,XN as shown in Figure 4.

jNMF plot distribution Demonstrate the module size distributions.

6

Description

This function provides the histograms for the size distributions of (N + 1) types of features
in the identified md-modules.

Usage

jNMF plot distribution(nSample, XInd, Comodule, FeatureType, fig, figure title);

Arguments

XInd, FeatureType, fig, figuretitle
They are the same as those in function ‘jNMF plot results’.

nSample The number of samples.
Comodule It is the same as that in function ‘jNMF comodule’.

Output

Histograms for the size distributions of (N+1) types of features in the identified md-modules
as shown in Figure 4.

1.3 Output into text files

Index2LabelForModuleContent Output the identified md-modules into text files.

Description

Output a number of text files, each of which records the selected feature names.

Usage

Index2LabelForModuleContent(ModuleIndex, FeatureLabel, TypeName, ResultsFile);

Arguments

ModuleIndex A (K × 1) cell array.ModuleIndex{i} records the indexes of theith
identified module for one type of features.

FeatureLabel A (n× 1) cell array recording all the names of one type of features.
TypeName A string for the feature type (e.g.,TypeName = ‘Gene expression’).
ResultsFile A string for the folder name to save these lists (e.g.,TypeName

= ‘Gene expression’, ResultsFile = ‘jNMFresults’, all the identified
gene lists are saved in the directory:‘./jNMF results/GeneLists/’.

Output

A number of text files (e.g.,GeneList1.txt, GeneList2.txt,)

OutputModule2TXT Output the feature indexes of the identified md-modules.

Description

Output the feature indexes of the identified md-modules intoa text file.

Usage

OutputModule2TXT(Comodule, FeatureType, ResultsFile);

Arguments

Comodule It is the same as that in function ‘jNMF comodule’.
ResultsFile A string for the name of this text file.

7

Output

A text file named asjNMF Results.txt(ResultsFile = ‘jNMFResults’), recording the number
and indexes of selected features separated by comma.

2 SNMNMF

SNMNMF(SparseNetwork-regularizedMultiple NMF) can incorporate the interactions within
(A11 ∈ R

n1×n1 , A22 ∈ R
n2×n2) and between the two genomics variables (A12 ∈ R

n1×n2) into
the jNMF framework for pairwise case (X1 ∈ R

p×n1 ,X2 ∈ R
p×n2). Users can choose which

networks they prefer to incorporate in the framework by setting the corresponding parameters.
Besides, it also adds the sparsity constraints for basis matrix W and weight matricesH1 and
H2. With the network-regularized constraints,SNMNMFmakes the variables linked in these
two networks more likely to be placed into the same module. With the sparsity constraints, it
helps us choose key variables. These constraints both lead to the identified md-modules more
biologically interpretable. This model is defined as follows:

minW,Hi

2∑

i=1

‖Xi −WHi‖
2
F −

∑

1≤i≤j≤2

λijTr(HiAijH
T
j)

+γ1‖W‖2F + γ2(
∑

i

‖h
(1)
i ‖21 +

∑

j

‖h
(2)
j ‖21)

s.t. W ≥ 0,H1 ≥ 0,H2 ≥ 0.

whereh(1)i is theith column ofH1, andh(2)j is thejth column ofH2.

2.1 Algorithm

Run SNMNMF The main function for SNMNMF.

Description

This is the main function for SNMNMF which integrates all therelated functions to achieve
it.

Usage

Run SNMNMF(Input);

Arguments

Input A structure variable (Section 5).

Output

It saves all the results in the directory‘./MIA/SNMNMF/SNMNMFResults/’, including
‘SNMNMF Results.mat’, ‘SNMNMFRunRecords.txt’, ‘SNMNMFResults.txt’, several folders
and figures, which record the similar contents with those in function ‘Run jNMF’ of jNMF
as shown in Figure 2, Figure 3 and Figure 4.

SNMNMF PrepData Preprocess the input data.

Description

This function is used to preprocess the input data to ensure the non-negativity.

Usage

[newInput, isdouble] = SNMNMFPrepData(Input);

8

Arguments

Input A structure variable including three components:
Input.data A matrix combing two data blocks sequentially tobe factorized

(e.g.,Input.data= [X1,X2]).
Input.XBlockInd A matrix of size2× 2. The two elements of theith row give the

start and end column indexes inInput.datafor data matrixXi

(i = 1, 2).
Input.netAdj An adjacency matrix for the relationships between the features in

Input.data, that is, Input.netAdj= [A11, A12;A
T
12, A22].

Output

newInput A structure variable including
newInput.data A non-negative matrix which is transformed from Input.data.
newInput.XBlockInd A matrix of size2× 2 which is similar withInput.XBlockInd.
newInput.netAdj An adjacency matrix transformed fromInput.netAdj.

isdouble A binary variable (1 indicates changes have been made, and 0 is for
no change, that is,Input = newInput).

SNMNMF comodule Obtain the md-modules.

Description

This function computes the optimal factorization results through running SNMNMF for multiple
times, then identify the md-modules based on the factorizedmatricesW,Hi.

Usage

[W, H1, H2, Comodule, params] = SNMNMFcomodule(Input, params);

Arguments

Input A structure variable defined as that in function‘SNMNMF PrepData’,
but theInput.datais a non-negative matrix.

params A structure variable, except forparams.isdouble, params.K, params.nloop,
params.maxiter, params.thrdmodule, defined similar as those in the
function ‘jNMF comodule’described above. There are five specific
components, including

params.thrXr, params.thrXc
parameters referring to the basis matrixW-related term, the weight
matricesHi-related terms in the objective function to limit the growth

of W ,
makeHi sparse, respectively.

params.thrNet11, params.thrNet12, params.thrNet22
parameters referring to the networkA11, A12, A22 related constraints
in the objective function.

Output

W, H1, H2 Factorization results such thatInput.data≈ [WH1,WH2]. W is
the basis matrix of sizem×K,H1 is the weight matrix of sizeK×n1

andH2 is the weight matrix of sizeK × n2, whereK = params.K.
Comodule Identified md-modules recorded in a(K×3) cell array, which has the

same definition as that in function‘jNMF comodule’.
params Compared to ‘params’ as input, there are something new added in it,

includingparams.recordsandparams.iterNumListwhich are similar
with those in the function‘jNMF comodule’, whereN = 2.

9

SNMNMF algorithm SNMNMF algorithm.

Description

This implements the SNMNMF algorithm.

Usage

[W, H1, H2, TerminalObj, iter] = SNMNMFalgorithm(X1, X2, A11, A12, A22, params);

Arguments

X1, X2 The non-negative input matrices.
A11, A12, A22 Adjacency matrices for the relationships within and between the

features inX1 andX2.
params A structure variable includingparams.isdouble, params.K,

params.thrdmodule, params.thrXr, params.thrXc, params.thrNet11,
params.thrNet12, params.thrNet22. They are the same as those in
function ‘SNMNMF comodule’.

Output

W, H1, H2 Factorization results like those in function ‘SNMNMFcomodule’.
TerminalObj A(iter × 3) matrix each row of which records the values of all the

terms in the objective function and the sum of them in each iteration.

SNMNMF module Identify the md-modules from factorized matrix.

Description

Based on the factorized matrixW , H1 orH2, identify the md-module members for each type
of features.

Usage

module = SNMNMFmodule(H, t, isdouble);

Arguments

H, t, isdouble They are defined as those in function‘jNMF module’.
Output

module Defined as that in function‘jNMF module’.

2.2 Output figures

SNMNMF plot X Provide the heatmaps for the original input matrices.

Description

Draw the heatmaps for the original input matrices (X1 andX2). The arguments and outputs
of this function are similar with those in the function‘jNMF plot X’ of jNMF with N = 2.

Usage

SNMNMF plot X(X, XInd, fig, figure title, colormaptype);

SNMNMF plot results Show the heatmaps of a identified md-module.

Description

10

Show the heatmaps of a selected identified md-module (circled in yellow lines). The arguments
and outputs of this function are similar with those in the function ‘jNMF plot result’ with N = 2.

Usage

SNMNMF plot results(X, XInd, FeatureType, fig, figuretitle, colormaptype, vectorForRank);

SNMNMF plot correlation Demonstrate the correlations between the original
data and the reconstructed one.

Description

Demonstrate the correlations between the original dataXi and the reconstructed onenewXi
= WHi using boxplot (i = 1, 2). The arguments and outputs of this function are similar with
those in the function‘jNMF plot correlation’ with N = 2.

Usage

corrMat = SNMNMFplot correlation(X, newX, XInd, newXInd, fig, figuretitle);

SNMNMF plot distribution Demonstrate the module size distributions.

Description

This function provides the histograms for the size distributions of two types of features in the
identified md-modules. The arguments and outputs of this function are similar with those in the
function ‘jNMF plot distribution’ with N = 2.

Usage

SNMNMF plot distribution(nSample, XInd, Comodule, FeatureType, fig, figure title);

2.3 Output text files

Index2LabelForModuleContent Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

OutputModule2TXT Output the feature indexes of the identified md-modules.

Description

This function is the same as that in jNMF.

3 sMBPLS

sMBPLS(sparseMulti-Block PartialLeastSquare) extends the standard PLS method to discover
associations between multiple input matrices (X1,X2, ...,XN ;N ≥ 1,Xi ∈ R

p×ni and a
response matrix (Y ∈ R

p×m) in a sparse manner. It identifies md-modules in which a subset of
heterogeneous input features jointly explain a subset of the response variables. This problem is
defined as,

11

max
wi,q,bi

cov(t, u)−
N∑

i=1

λi‖wi‖1 − τ‖q‖1

with ti = Xiwi, u = Y q, t =

N∑

i=1

biti

s.t.‖wi‖
2
2 = 1, ‖q‖22 = 1,

N∑

i=1

b2i = 1.

3.1 Algorithm

Run sMBPLS The main function for sMBPLS.

Description

This is the main function for sMBPLS which integrates all therelated functions to achieve it.

Usage

Run sMBPLS(Input);

Arguments

Input A structure variable (Section 5).

Output

It saves all the results in the directory‘./MIA/sMBPLS/sMBPLSResults/’, including
sMBPLSResults.mat, sMBPLSRunRecords.txt, sMBPLSResults.txt,several folders and figures,
which record the similar contents with those in function‘Run jNMF’ of jNMF as shown in
Figure 2, Figure 3 and Figure 4.

meanc Preprocess the input matrices.

Description

This function centers the input data across the samples to enable the mean of each column of
the input matrix to be zero.

Usage

[Zm,mz] = meanc(Z);

Arguments

Z A matrix.

Output

Zm The centered matrix.
mz A row vector.mz(i) is the mean ofZ(:,i).

sMBPLScomodule Obtain the md-modules.

Description

This function returns all the md-modules by running SMBPLS for multiple times.

Usage

[nfactor, W, Q, WT, WU, TT, UU, sT, sU, XX, YY, Comodule, params] =
sMBPLScomodule(X, Y, XInd, YInd, FeatureType, params);

12

Arguments

X The input matrix of size (p × n) combingN data blocks (e.g.,
X = [X1, ...,XN]).

Y The response matrix of size (p×m) combingM data blocks (e.g.,
Y = [Y1, ..., YM]). Generally,M = 1.

XInd A matrix of sizeN ×2. The two elements of theith row give the start
and end column indexes inX for data matrixXi (i = 1, ..., N).

YInd A matrix of sizeM × 2. It is for Y defined similarly withXInd.
FeatureType A (1×(N +M)) cell array. FeatureType{i} records the name ofith

type of features (e.g.,FeatureType ={‘microRNA expression’,‘CNV’,
‘DNA Methylation’,‘Gene expression’}.

params A structure variable including
params.nfactor A pre-defined number of identified md-modules.
params.nfold A positive integer which is the number of foldsused for cross-validation

(CV) procedures. Generally, we setparams.nfold= 5 or 10.
params.maxiter The maximal number of iterations for sMBPLSalgorithm.
params.tol The precision for the convergence of sMBPLS algorithm.
params.param A (l× 1) cell array restoring all the combinations of parameters tobe

selected.params.param{i} contains one group of parameters used
in the algorithm, including thrXc and thrYc (controlling the number
of selected features of X and Y in the identified md-modules),thrXr
and thrYr (thrXr = thrYr, controlling the number of selectedsamples
in the identified md-modules), maxiter (maxiter = params.maxiter),
tol (tol = params.tol).

Output

nfactor The number of identified md-modules (nfactor≤ params.nfactor).
W A (n× nfactor) matrix,W(:,i) is the weight vector forX in ith md-module.
Q A (m× nfactor) matrix,Q(:,i) is the weight vector forY in ith

md-module.
WT A (N× nfactor) matrix,WT(:,i) is the super weight vector forX in

ith md-module.
WU A (M× nfactor) matrix,WU(:,i) is the super weight vector forY in

ith md-module.
TT A (p× (N× nfactor)) matrix,TT(:, N×(i−1)+j) is the score vector

for Xj in ith md-module (i = 1, ...,nfactor; j = 1, ..., N).
UU A (p× (M× nfactor)) matrix,UU(:,M × (i− 1) + j) is the score

vector forYj in ith md-module (i = 1, ...,nfactor; j = 1, ...,M).
Generally,M = 1.

sT A (p× nfactor)) matrix, sT(:, i) is the super score forX in ith md-module
(i = 1, ...,nfactor).

sU A (p× nfactor)) matrix,sU(:, i) is the super score forY in ith md-module
(i = 1, ...,nfactor).

XX, YY The new matrix after removing the signals of identifiedmd-modules
from X andY .

Comodule The md-modules are recorded in a (nfactor×(M +N +1)) cell array
which is similar to that in the function‘jNMF comodule’.

params Compared to ‘params’ as input, there are something new added in it,
including

params.iterNumList A (nfactor×1) vector, where each element is the number of iterations
for each round of running.

13

params.records A (nfactor×1) cell array.params.records{i} is a (iter×(M+N+2))
matrix where each row records the values of all the terms in the
objective function and the sum of them in each iteration whenidentify
theith md-module, anditer = params.iterNumList(i), i = 1,...,nfactor.

params.randRowPartitions
A (params.nfold×1) cell array. For n-fold CV procedure,p samples
are partitioned intoparams.nfoldgroups equally.params.randRowPartitions{i}
records the sample indexes in theith group (i = 1, ...,params.nfold).

params.cvscores A matrix whereparams.cvscores(i, j) is the cv score for theith group
of parameters when identify thejth md-module.

params.paramsidxused
A (nfactor×1) vector.params.paramsidxused(i)is the index of
selected parameters for identifying theith md-module.

sMBPLSalgorithm sMBPLS algorithm.

Description

This implements the sMBPLS algorithm.

Usage

[success, w, q, b, a, T, U, t, u, XX, YY, TerminalObj, iter]
= sMBPLSalgorithm(X, Y, XInd, YInd, param);

Arguments

X, Y, XInd, YInd Defined the same as those in function‘sMBPLScomodule’.
param A structure variable including six components:

param.maxiter, param.tol
Same as those in function‘sMBPLScomodule’.

param.thrXc, param.thrYc
Two positive integers which are two thresholds for selecting features
of X andY in the identified md-modules.

param.thrXr, param.thrYr
param.thrXr = param.thrYr. A positive integer which is a threshold
for selecting samples in the identified md-modules.

Output

success An indicator to show if this algorithm runs successfully or not
(1 for success, 0 for failure).

w, q Weight vectors forX,Y .
b, a Super weight vectors forX,Y .
T A (p×N) matrix,T(:,i) is the score vector forXi (i = 1, ..., N).
U A (p ×M) matrix,U(:,i) is the score vector forYi (i = 1, ...,M).

Generally,M = 1.
t, u Super score vectors forX,Y .
XX, YY The new matrices after removing the signals of currentmd-modules

from X andY .
iter The number of iterations to indicate when the algorithmstops.
TerminalObj A (iter×(2 +N +M)) matrix in which each row records the values

of all the terms in the objective function and the sum of them in each
iteration.

14

sMBPLSparams Integrate all the parameters into an unified framework.

Description

This function is used to incorporate all the parameters intoa structure variable‘newparams’.

Usage

newparams = sMBPLSparams(params);

Arguments

params A structure variable including
params.maxiter, params.tol, params.nfold, params.nfactor

They are the same as those in the function‘sMBPLScomodule’.
params.thrXYrlist

This is a column vector recording the thresholds for selection samples.
params.thrXclist

A (1×N) cell array.params.thrXclist{i} is a column vector, which
includes several thresholds for selection features in datamatrixXi

(i = 1, ..., N).
params.thrYclist

A (1×M) cell array.params.thrYclist{i} is a column vector, which
includes several thresholds for selection features inYi (i = 1, ...,M).

Output

newparams A structure variable which is the same as the inputargument‘params’
in ‘sMBPLScomodule’.

sMBPLSselectparam Select a group of proper parameters used in sMBPLS
algorithm.

Description

Using a cross-validation (CV) procedure to select a group ofproper parameters.

Usage

[paramidx, cv scores] = sMBPLSselectparam(X, Y, XInd, YInd, params);

Arguments

X, Y, XInd, YInd Defined as those in function‘sMBPLScomodule’.
params A structure variable includingparams.param, params.randRowPartitions,

which are both the same as the output argument‘params’ in function
‘sMBPLScomodule’.

Output

paramidx The index of selected optimal parameters in params.param.
cv scores A column vector recording the CV scores for all groupsof parameters.

sMBPLSgetCVscore Calculate the CV score for one group of parameters.

Description

By using a n-fold cross-validation (CV) procedure for one group of parameters, it will obtain
the corresponding CV score to assess this group of parameters. The smaller the better.

Usage

cv score = sMBPLSgetCVscore(X, Y, XInd, YInd, param, randRowPartitions);

15

Arguments

X, Y, XInd, YInd, param Defined the same as those in function‘sMBPLSalgorithm’.
randRowPartitions Defined the same as‘params.randRowPartitions’in the output of

function ‘sMBPLScomodule’.

Output

cv score A score for this group of parameters’param’ in the input arguments.

variablesparse Make the vector sparse.

Description

Make the input vector sparse based on the input threshold.

Usage

[sw, err] = variablesparse(w, thrd, msg);

Arguments

w A vector.
thrd A threshold for the degree of sparsity ofw.
msg A string representing the name of variablew.

Output

sw The sparse vector.
err An indicator (1 indicates it is done successfully, and0 for not).

newMatrix Obtain a new matrix.

Description

Remove the signals of the current identified md-module from the current data matrixX, and
obtain a new matrixXX.

Usage

XX = newMatrix(X, t, thrd, msg1, msg2);

Arguments

X A matrix.
t The latent variable for dataX.
thrd A threshold.
msg1 A string representing the name of variablet.
msg2 A string representing the name of variableX.

Output

XX A new matrix removed signals from matrixX.

3.2 Output figures

sMBPLSplot XY Provide the heatmaps for the original or reordered input
matrices.

Description

Draw the heatmaps of the original input matrices (X,Y) by ignoring the input argument
‘vectorForRank’ or the heatmaps of reordered input matrices ordered based onthe variable

16

‘vectorForRank’where the signals of the identified md-module will be locatedin the four corners
of this heatmap.

Usage

sMBPLSplot XY(X, Y, XInd, YInd, fig, figure title, colormaptype, vectorForRank);

Arguments

X, Y, XInd, YInd Defined as those in the function‘sMBPLScomodule’.
fig, figure title, colormaptype

Defined as those in the function‘jNMF plot X’ of jNMF.
vectorForRank A structure variable including

vectorForRank.t The scores used for ordering samples. It isone column of matrixsT
in the output of function‘sMBPLScomodule’.

vectorForRank.w, vectorForRank.q
The weight vectors forX,Y related to a specific md-module,
respectively. They are respectively one column of matrixW, Qin the
output of function‘sMBPLScomodule’.

Output

The heatmaps for the original or reordered input data matrices.

sMBPLSplot results Demonstrate the heatmaps of a specific md-module and the
scatterplots for the correlation between the selected features.

Description

Show the heatmaps of a selected md-module (circled in yellowlines), and the scatterplots for
the correlations between the selected features.

Usage

sMBPLSplot results(X, Y, XInd, YInd, FeatureType, fig, figuretitle, colormaptype, vectorForRank);
Arguments

X, Y, XInd, YInd, fig, figure title, colormaptype
Defined the same as those input arguments in‘sMBPLSplot XY’.

vectorForRank A structure variable including six components. Except for the three
ones in the input argumentvectorForRankof ‘sMBPLSplot XY’,
there are also

vectorForRank.T A (p ×N) matrix. T (:, i) is the score vector forXi (i = 1, ..., N).
vectorForRank.U A (p×M) matrix.U(:, i) is the score vector forYi (i = 1, ...,M).
vectorForRank.comodule

A (1×(N +M + 1)) cell array.vectorForRank.comodule{i} records
theith feature indexes of a selected md-module. The first column is
for selected samples.

FeatureType A (1×(N +M)) cell array. FeatureType{i} records the name ofith
type of features (e.g.,FeatureType ={‘microRNA expression’,‘CNV’,
‘DNA Methylation’,‘Gene expression’}.

Output

The heatmaps for certain selected md-module to demonstratethe patterns of this md-module
as shown in Figure 4.

The scatterplots for the correlation between the selected features as shown in Figure 5.

sMBPLSplot distribution Demonstrate the module size distributions.

17

Description

This function provides histograms for the size distributions of all the components in the
identified md-modules.

Usage

sMBPLSplot distribution(nSample, Ind, Comodule, FeatureType, fig, figure title);

Arguments

Ind Ind = [XInd; YInd]. XInd, YIndare the same as those in function
‘sMBPLScomodule’.

Comodule It is the same as that in the output of function‘sMBPLScomodule’.
nSample, FeatureType, fig, figuretitle

Similar with those in function‘jNMF plot distribution’.

Output

Histograms for the size distributions of all the features inthe identified md-modules.

3.3 Output text files

Index2LabelForModuleContent Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

OutputModule2TXT Output the feature indexes of the identified md-modules.

Description

This function is the same as that described in jNMF.

4 SNPLS

SNPLS(SparseNetwork-regularizedPLS) is designed for one input matrix (X ∈ R
p×n) and

one response matrix (Y ∈ R
p×m). It introduces network-regularized constraints, expressed as

adjacency matricesA ∈ R
n×n of a given interaction networkG1 for the features inX and/or

B ∈ R
m×m of another interaction networkG2 for Y . This problem is defined as,

max
g,d

cov(Xg, Y d)− λ1g
TLXg − λ2d

TLY d− λ3‖g‖1 − λ4‖d‖1

s.t. gT g = 1, dTd = 1.

whereu = Xg, v = Y d,LX , LY are the symmetric Laplacian matrices of networkG1, G2,
repsectively.

4.1 Algorithm

Run SNPLS The main function for SNPLS.

Description

This is the main function for SNPLS, which integrates all therelated functions to achieve it.

18

Usage

Run SNPLS(Input);

Arguments

Input A structure variable (Section 5).

Output

It saves all the results in the directory‘./MIA/SNPLS/SNPLSResults/’, including
SNPLSResults.mat, SNPLSRunRecords.txt, SNPLSResults.txt,several folders and figures, which
record the similar contents with those in function‘Run jNMF’ of jNMF as shown in Figure 2,
Figure 3 and Figure 4.

SNPLScomodule Obtain the co-modules (md-modules).

Description

This function returns all the co-module (md-modules) by running SNPLS for multiple times.

Usage

[nfactor, G, D, U, V, XX, YY, Comodule, params] = SNPLScomodule(X, Y, A, B, FeatureType,
params);

Arguments

X The input matrix of size (p × n).
Y The response matrix of size (p×m).
A The adjacency matrix for the interactions between the features inX,

whereA = (aij), aij = 1 if featuresi andj are linked;aij = 0,
otherwise.

B The adjacency matrix defined similar withA for the features inY .
FeatureType A (1×2) cell array. FeatureType{i} records the name ofith type

of features (e.g.,FeatureType ={‘microRNA expression’,‘Gene expression’}.
params A structure variable including the components below:

params.nfactor, params.nfold, params.maxiter, params.tol
Defined the same as those in the function‘sMBPLScomodule’.

params.param A (l × 1) cell array recording all the combinations of parameters to
be selected. params.parami contains one group of parameters used in
the algorithm, includingthrXc andthrYc(controlling the number of
selected features ofX andY in the identified md-modules)thrXNet
andthrYNet(parameters for the network-regularized constraints in
the objective function),maxiter(maxiter = params.maxiter),
tol (tol = params.tol).

params.thrdmodule A positive vector of size1×3 which stores the thresholds for selecting
samples and features inX andY .

Output

nfactor, XX, YY, Comodule
Similar with those in the function‘sMBPLScomodule’with
N = M = 1.

G A (n× nfactor) matrix,G(:,i) is the weight vector forX in theith
md-module.

D A (m× nfactor) matrix,D(:,i) is the weight vector forY in theith
md-module.

U A (p× nfactor)) matrix,U(:,i) is the super score forX in theith
md-module (i = 1, ...,nfactor).

19

V A (p× nfactor)) matrix,V(:,i) is the super score forY in theith
md-module (i = 1, ...,nfactor).

params Compared to‘params’ as input, there are new components including
params.iterNumList, params.records, params.randRowPartitions,
params.cvscores, params.paramsidxuseddefined the same as the
output argument in the function‘sMBPLScomodule’.

SNPLSalgorithm SNPLS algorithm.

Description

This implements the SNPLS algorithm.

Usage

[success, g, d, u, v, XX, YY, TerminalObj, iter] = SNPLSalgorithm(X, Y, LX, LY, param);

Arguments

X, Y The same as those in function‘SNPLScomodule’.
LX, LY Laplacian matrices of size (n× n) and (m×m) about the interaction

network for the features in dataX andY , respectively.
param A structure variable including

params.tol, params.maxiter
Defined the same as those in the function‘SNPLScomodule’.

param.thrXc, param.thrYc
Two non-negative numbers which are respectively related tothe
parametersλ3, λ4 in the objective function.

param.thrXNet, param.thrYNet
Two non-negative numbers.param.thrXNetis the parameterλ1 in the
objective function used in the network-regularized constraint about
X. param.thrYNetis similar withparam.thrXNetused in the netowrk
aboutY if available.

If param.thrXNet = param.thrYNet = 0, this algorithm reduces to sMBPLS for pairwise case.
If param.thrXc = param.thrYc = param.thrXNet = param.thrYNet= 0, this algorithm reduces

to the standard PLS.

Output

success, TerminalObj, iter, XX, YY
They are the same as those in the function‘sMBPLSalgorithm’.

g, d Weight vectors forX andY .
u, v Score vectors forX andY .

SNPLSparams Integrate all the parameters into an unified framework.

Description

This function is used to incorporate all the parameters intoa structure variable‘newparams’.

Usage

newparams = SNPLSparams(params);

Arguments

params A structure variable including
params.tol, params.maxiter, params.nfold, params.nfactor, params.thrdmodule

Defined the same as those in the function‘SNPLScomodule’.
params.thrXNetlist This is a column vector recording the parameters for thenetwork

20

constraint aboutX in the objective function.
params.thrYNetlist This is a column vector recording the parameters for thenetwork

constraint aboutY in the objective function.
params.thrXclist A column vector, which includes several thresholds forselecting

features in data matrixX.
params.thrYclist A column vector, which includes several thresholds forselecting

features in data matrixY .

Output

newparams A structure variable defined the same as the input argument‘params’
in the function‘SNPLScomodule’.

SNPLSselectparam Select a group of proper parameters used in SNPLS.

Description

Using a cross-validation (CV) procedure to select a group ofproper parameters.

Usage

[paramidx, cv scores] = SNPLSselectparam(X, Y, LX, LY, params);

Arguments

X, Y, LX, LY Defined the same as those in the function‘SNPLSalgorithm’.
params A structure variable includingparams.param, params.randRowPartitions,

which are both the same as the output argument‘params’ in the
function ‘SNPLScomodule’.

Output

paramidx The index of the selected optimal parameters in params.param.
cv scores A column vector recording the CV scores for all groupsof parameters.

SNPLSgetCVscore Calculate the CV score for a group of parameters.

Description

By using a n-fold cross-validation (CV) procedure for one group of parameters, it will obtain
the related CV score to assess these parameters. The smallerthe better.

Usage

cv score = SNPLSgetCVscore(X, Y, LX, LY, param, randRowPartitions);

Arguments

X, Y, LX, LY, param are the same with those in the function‘SNPLSalgorithm’.
randRowPartitions is the same with‘params.randRowPartitions’in the output of function

‘SNPLScomodule’.

Output

cv score The score for this group of parameters‘param’ in the input arguments.

PLS The standard PLS algorithm.

Description

This function is used to produce the initial vectors for SNPLS.

Usage

[success, g, d, u, v] = PLS (X, Y);

21

Arguments

X, Y Two input matrices for the PLS algorithm.

Output

success An indicator to indicate whether PLS performs successfully or not
(1 for success and 0 for failure).

g, d The weight vectors for input dataX andY .
u, v The score vectors for input dataX andY .

thresholding Make the input vector sparse.

Description

Make the input vector sparse based on the input thresholds.

Usage

sw = thresholding(w,thrd,msg);

Arguments

w A vector.
thrd A threshold for the degree of sparsity ofw.
msg A string for the name of variablew.

Output

sw The sparse vector.

4.2 Output figures

SNPLSplot XY Provide the heatmaps for the original or reordered input matrices.

Description

It is a similar function as ‘sMBPLSplot XY’ described in sMBPLS.

Usage

SNPLSplot XY(X, Y, fig, figure title, colormaptype, vectorForRank);

Arguments

X, Y The same as those in the function‘SNPLScomodule’.
fig, figure title, colormaptype

Defined the same as those in the function‘jNMF plot X’of jNMF.
vectorForRank A structure variable including

vectorForRank.u The scores used for ordering samples. It isone column of matrixU
in the output of function‘SNPLScomodule’.

vectorForRank.g, vectorForRank.d
The weight vectors forX andY related to one identified md-module,
respectively. They are respectively one column of matrixG, D in the
outputs of function‘SNPLScomodule’.

Output

The heatmaps for the original or reordered input data matrices.

SNPLSplot results Demonstrate the heatmaps of certain identified md-module
and the scatterplots for the correlation between the selected
features.

22

Description

It is a similar function with‘sMBPLSplot results’described in sMBPLS.

Usage

SNPLSplot results(X, Y, FeatureType, fig, figuretitle, colormaptype, vectorForRank);

Arguments

X, Y, fig, figure title, colormaptype
The same as those of function‘SNPLSplot XY’.

vectorForRank A structure variable containing
vectorForRank.g, vectorForRank.d, vectorForRank.u

Defined the same as those in the function‘SNPLSplot XY’.
vectorForRank.comodule

A (1× 3) cell. It has the similar meaning with that in the function
‘sMBPLSplot results’.

vectorForRank.v The score vector for dataY . It is one column of matrixV in the output
of function ‘SNPLScomodule’.

FeatureType Similar definition with that in the function‘sMBPLSplot results’
with N = M = 1.

Output

The heatmaps for certain selected md-module to demonstratethe patterns of this md-module.
The scatterplots for the correlation between the selected features.

SNPLSplot distribution Demonstrate the module size distributions.

Description

This function provides histograms for the size distributions of all the components in the
identified md-modules, which has the similar input arguments and output results.

Usage

SNPLSplot distribution(nSample, Ind, Comodule, FeatureType, fig, figure title);

4.3 Output text files

Index2LabelForModuleContent Output the identified md-modules into text files.

Description

This function is the same as that described in jNMF.

OutputModule2TXT Output the feature indexes of identified md-modules.

Description

This function is the same as that described in jNMF.

23

5 Input data

To facilitate the usage, MIA package implements the four methods using the same structure
variable to describe the input data. This variable, namedInput, includes the following components:

Input.data: A matrix storing all the multi-dimensional data sequentially (e.g., Input.data=
[X1, ...,XN]). Each row corresponds to the genomics features of a specificsample. Each type
of genomic data is assigned its own set of columns.

Input.XBlockInd: A matrix of sizeN × 2. The two elements inith row give the start and end
column indexes inInput.datafor theith X matrix (i = 1, ..., N).

Input.YBlockInd: A matrix storing the response matrixY for both sMBPLS and SNPLS. Its
format is similar toInput.XBlockInd.

Input.netAdj: The symmetric adjacency matrix of a given network used for SNMNMF and
SNPLS, where the features have the same order as inInput.data. This network combines the
interactions between and within the variables in multiple types of variables. The element of this
matrix equals to1 for linked features in the network, and0 otherwise.

Input.SampleLabel: A vector recording the labels of samples.
Input.FeatureLabel: A vector recording the feature names inInput.data. Theith label corresponds

to theith feature inInput.data.
Input.FeatureType: A vector recording the feature types inInput.data. Here we give an

example:Input.FeatureType= {‘Gene expression’, ‘microRNA expression’, ‘DNA methylation’}.
Input.params: A structure variable, storing all the parameters used in MIA.

For these four methods, there are three common parameters, including
- Input.params.NCluster: A pre-defined number of md-modules. For example, we

may setInput.params.NCluster= 20.

- Input.params.maxiter: The maximal iteration times in each algorithm. For example,
we may setInput.params.maxiter= 100.

- Input.params.tol: The precision for convergence of each algorithm. For example,
we may setInput.params.tol= 10−6.

For jNMF, there are two specific parameters:
- Input.params.nloop: The number of repeating times to run this algorithm. To obtain

a robust and optimal solution, this algorithm is run for multiple times repeatedly, and
the solution with the minimal value of objective function isaccepted. For example,
we may setInput.params.nloop= 50.

- Input.params.thrdmodule: A non-negative vector of size1 × (N + 1) to select
features in md-modules.Input.params.thrdmodule(i+1) is the threshold for selecting
the ith type of features inInput.data(i = 1, ..., N). The first one is for selecting
samples. The larger they are, the smaller number of featuresare selected. Users can
set it based on the size of md-modules they prefer to identify. For example, we may
Input.params.thrdmodule= ones(1, N + 1).

For SNMNMF, except forInput.params.nloopand Input.params.thrdmodule, there are
also:

- Input.params.thrNet11, Input.params.thrNet12, Input.params.thrNet22: The three
non-negative numbers are set for the parameters respectively related to the network
constraints about networkA11, A12, A22 in the objective function, whereA11, A22

are respectively the adjacency matrices for the interaction networks within the features
in data matrixX1, X2; A12 is for the interaction network between the two types of
features. User can choose which networks they prefer to use in the framework by
setting the corresponding parameters. For example, ifInput.params.thrNet11= 0,
the networkA11 will not be used.

24

- Input.params.thrXr, Input.params.thrXc: The two non-negative numbers are set for
the row related (orW), and column related (Hi) terms respectively in the objective
function. It controls the degree of sparsity of matrixW , H. For example, we may
setInput.params.thrXr= 10, Input.params.thrXc= 10.

For sMBPLS, there are:
- Input.params.nfold: A positive number used forn-fold cross-validation (CV) procedure.

Generally, we setInput.params.nfold= 5 or= 10. This method applies CV procedure
to select a proper group of parameters from all the combinations of these parameter
lists described below.

- Input.params.thrXYrlist: A column vector with positive integers. They are candidates
for thresholds in order to select samples in md-modules. Forexample, we may set
Input.params.thrXYrlist = [20; 30].

- Input.params.thrXclist, Input.params.thrYclist: Two row vectors of size1×N, 1×
M with positive integers to control the degree of sparsity forthe weight variables of
input dataX, Y , respectively. For example, we may setInput.params.thrXclist =
repmat({[20; 30]}, 1, N), Input.params.thrYclist = repmat({[20; 30]}, 1,M), where
N = size(Input.XBlockInd,1), M = size(Input.YBlockInd,1).

For SNPLS, there are:

- Input.params.nfold: It is the same as that in sMBPLS.

- Input.params.thrXclist, Input.params.thrYclist: They have the same meaning as
those in sMBPLS for the situation ofN = 1, M = 1. Thus, they are defined as
column vectors. For example, we may setInput.params.thrXclist = [0.01; 0.03; 0.05],
Input.params.thrYclist = [0.1; 0.3; 0.5].

- Input.params.thrXNetlist, Input.params.thrYNetlist: The two column vectors with
non-negative values. They have the similar function withInput.params.thrNet11
in SNMNMF. Input.params.thrXNetlist, Input.params.thrYNetlist are respectively
for the networks within the features in input dataX, and response dataY . For
example, we may setInput.params.thrXNetlist = [1; 5]; Input.params.thrYNetlist
= [1; 5].

- Input.params.thrdmodule: It is a non-negative matrix of size3 × 2. The first
columnInput.params.thrdmodule(i, 1) is the threshold for selecting theith feature
in Input.data(i = 1, 2, 3). And the second columnInput.params.thrdmodule(i, 2)
is a percentage in case of no features selected using the threshold. The first row is
for selecting samples. The larger the thresholds are, the smaller number of features
are selected. Users can set it based on the size of md-modulesthey prefer to identify.
For example, we may setInput.params.thrdmodule= [1, 0.5; 1, 0.5; 1, 0.5].

In addition, for the components that are not used in certain methods (e.g.,Input.YBlockIndin
jNMF and SNMNMF andInput.netAdjin jNMF and sMBPLS), users can set them null or just
ignore them.

With this data structure, MIA is able to partitionInput.datainto corresponding data matrices
as input for each method automatically.

Next, we provide an example for constructing the input data used in SNMNMF. Suppose
that one wants to identify 50 microRNA-gene co-modules by integrate gene expression profiles
(X1 ∈ R

385×12456) and micro-RNA expression profiles (X2 ∈ R
385×559) across the same set

of samples, as well as the gene interaction networkG1, gene-microRNA interaction network
G2. The networkG1 can be expressed by the adjacency matrixA11 = (aij)12456×12456, where
aij = 1 if gene i and genej is linked in the networkG1. Similarly, G2 is expressed by the

25

adjacency matrixA12 ∈ R
12456×559. If the microRNA interaction network is not available, the

corresponding adjacency matrixA22 is defined asA22 = zeros(559, 559).
Then, we could define the input dataInput as below:

Input.data= [X1,X2];
Input.XBlockInd= [1, 12456; 12457, 13015];
Input.YBlockInd= [];
Input.netAdj= [A11, A12;A12

T , A22];
Input.SampleLabel= {‘TCGA-24-1105-01A’;...;‘TCGA-13-0793-01A’};
Input.FeatureLabel= {‘SFRS8’;...;‘SCN3A’;‘hsa-mir-488’;...;‘hsa-mir-874’};
Input.FeatureType= {‘Gene’,‘miRNA’};
Input.params.NCluster= 50;
Input.params.maxiter= 100;
Input.params.tol= 10−6;
Input.params.nloop= 5;
Input.params.thrdmodule = [1,0.5;1,0.5;1,0.5];
Input.params.thrNet11= 10−4; Input.params.thrNet12= 0.01; Input.params.thrNet22= 0;
Input.params.thrXr= 10; Input.params.thrXc= 10;

Figure 1: Illustration of an example of the input data forSNMNMF.

26

a

b

c

d

Figure 2: An overview of the output results forSNMNMF. The details about each part are shown
in Figure 3 and Figure 4.

Figure 3: The details about the output files shown in Figure 2.(a) In each folder, there are a
number of text files, each of which records one type of components in one identified co-modules.
(c) A MATLAB data file storing the computation results, including the factorized matrices
W,H1,H2, the 50 identified co-modules, and the parameters used in this method. (d) The
first text file records the feature indexes of all the identified md-modules, in which the first three
numbers are the number of samples, genes, microRNAs in one identified md-modules, and the
next three columns show the indexes of selected samples, genes and microRNA, respectively.
Each list are included in the square brackets. The second text file records some information
during the iterations. The first line shows the parameters used in SNMNMF. The rest lines
show the changes of objective function during multiple-round running. It just records the results
better than the previous round.bestObjstores values of the terms in the objective function in the
‘ iloop’th round, andsumObj is the sum of these terms.

27

0 20 40 60 80
0

9

18

Samples

F
re

q
u
e
n
c
y

0 50 100 150
0

6

12

Gene

0 5 10
0

6

12

miRNA

Module size distributionsCorrelations between original

space and reconstructed space

Original data Identified comodule 1
X1 X2X1 X2 X1 X2

Gene subset
(2 x 70)

miRNA subset
(2 x 5)

S
a

m
p
le

 s
u

b
s
e
t
(2

 x
 5

6
)

Figure 4: An example for the output figures in Figure 2b.

Original data
X1 X3X2 Y

Reordered data 1

X1

CNV subset
(2 x 20)

S
a
m

p
le

 (
2
 x

 1
3
)

X2

Methylation subset
(2 x 13)

X3

miRNA subset
(2 x 16)

Y1

Gene subset
(2 x 13)

-0.41 0.43

-0.41

0.43

t1

u
1

-0.41 0.42

-0.41

0.42

t2
-0.41 0.55

-0.41

0.55

t3

Identified comodule 1

Figure 5: An example for the output figures for sMBPLS.

28

6 Guide for the MIA users without a MATLAB license

Guide:

1. Operating System requirements: Windows 64-bit.

2. Download and install the Windows 64-bit version of the MATLAB Runtime for R2015b
from the MathWorks Web site by navigating to
http://www.mathworks.com/products/compiler/mcr/index.html.

3. Prepare the input data and store them in the path “./MIA/InputData/”. In this folder, we
provide the input data for each method as examples. For each method, there are two Excel files
(one is for input data and another one is for input parameters), each of which includes several
sheets. Users need to arrange their data in the same way as those example Excel files in this
folder we provided. Note that, each sheet is renamed as the corresponding variable name as
described in our manuscript.

4. Open the Command Prompt (cmd.exe). Set the current path as where the MIA package is
located, e.g., “D:/MIA”.

5. Produce MATLAB data files (*.mat) by running PreInputData.exe. Type the command as
below:

D:\MIA>PreInputData.exe ./InputData/DataForjNMF.xlsx ./InputData/ParametersForjNMF.xlsx
./InputData/InputDataForjNMF.mat jNMF

or
D:\MIA>PreInputData.exe ./InputData/DataForSNMNMF.xlsx ./InputData/ParametersForSNMNMF.xlsx

./InputData/InputDataForSNMNMF.mat SNMNMF
or

D:\MIA>PreInputData.exe ./InputData/DataForsMBPLS.xlsx ./InputData/ParametersForsMBPLS.xlsx
./InputData/InputDataForsMBPLS.mat sMBPLS

or
D:\MIA>PreInputData.exe ./InputData/DataForSNPLS.xlsx ./InputData/ParametersForSNPLS.xlsx

./InputData/InputDataForSNPLS.mat SNPLS

The first two parameters are the file names storing input data and parameters; the next parameter
is the output file name. The last one is the selected method. The produced new data files (e.g.,
“InputDataForjNMF.mat”) are saved in the path “./MIA/InputData/”.

6. Run MIA.exe. Type the command as below:
D:\MIA> MIA.exe ./InputData/InputDataForjNMF.mat jNMF

or
D:\MIA> MIA.exe ./InputData/InputDataForSNMNMF.mat SNMNMF

or
D:\MIA> MIA.exe ./InputData/InputDataForsMBPLS.mat sMBPLS

or
D:\MIA> MIA.exe ./InputData/InputDataForSNPLS.mat SNPLS

The first one is about the input data file and the second one is about the selected method. For
each method, the results are saved their own directory. For example, the results of running jNMF
are saved in “./MIA/jNMF/jNMFResults/”.

29

http://www.mathworks.com/products/compiler/mcr/index.html

	jNMF
	Algorithm
	Output figures
	Output into text files

	SNMNMF
	Algorithm
	Output figures
	Output text files

	sMBPLS
	Algorithm
	Output figures
	Output text files

	SNPLS
	Algorithm
	Output figures
	Output text files

	Input data
	Guide for the MIA users without a MATLAB license

